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- ABSTRACT -

The relativistic expression for the dielectric tensor obtained

by Trubnikov is simplified in the very weakly relativistic limit at and

near electron cyclotron harmonics. Wave numbers parallel to magnetic
L

field are included, leading to relativistic damping when this wave

number is zero and to cyclotron damping when it is sufficiently large.

The transition is shown. Collisional damping is neglected. The dielectric

elements given here are also applicable to cases of complex w and real k.

This situatlon arises in Alouette reception since we are concerned with

an initial time value problem. For this application, we provide the

analytic continuation of a complicated function and investigate the

tracks where it is real for complex _.
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PREFACE

This report contains the following, entitled:

General Introduction:

Part I: The Dielectric Tensor Near Cyclotron Harmonics.

Part 2: The Dispersion of Waves in Cyclotron Harmonic Resonance

Regions with Application to the Alouette.

Part 3: Time Decay for Cyclotron Harmonics.

Part 4: Alouette Cyclotron Harmonics: Observations and Results

Appendix: Critique of Theeretical Work on Topside Sounder Resonances
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GEI_RA_INTRODUCTION

I. CYCLOTRON HARMONICS AND THE IONOSPHERE

This report in four parts summarizes the productive

theoretical work on the problem of the cyclotron harmonic ringing or

resonance in the upper ionosphere as observed by the Alouette swept-

frequency topside sounder satellite and also by the fixed frequency

S-48 satellite.

The Alouette sounder operates by generating a short (-I00_ sec)

pulse every 15 milliseconds at snme frequency between .5 and 12 Mc,

100 # sec. after which a receiver is turned on for 14.6 milliseconds to

listen for echoes from the upper ionosphere below the sounder. The

cyclotron harmonic ringing is observed when the sounder receiver

frequency is within say 60 kc of a harmonic of the electron cyclotron

frequency(evaluated at the satellite)which is typically .5 to 1 Mc.

When a resonance occurs in addition to the usual noise observed

immediately after the receiver is turned on, there is a strong signal

(at times,for the second harmonic, enough to block the receiver) which

dies away with persistance times of from .5 to 2 or more milliseconds.

Collisional effects are easily shown to be negligible for these times

of interest. For more details see Lockwood (1963)(1964), Warren (1963)

Johnston and Nuttall (196_) and Part _.

The object of this work was to explain and predict the features

of this interaction with a view to assessing the suitability of the

phenomenon as a magnetic field diagnostic.
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Preliminary Considerations

Because the cyclotron harmonic values fittod the s_.tellit_

value of magnetic field within .5%, the effect was not due to plasma

very far from the satellite (a minimum distance of 30 km) where the

magnetic field would change by more than .5%. On the other hand this

ss_ne agreement indicated that if plasma waves were involved the Doppler

shift was small so the wave phase velocity had to be at least 200 times

the relevant component of the satellite velocity and hence much greater

than the electron thermal velocity. The wavelength thus had to be much

ls_ger than the electron gyro-radius or Debye length.

An initial attempt was made to see if the self-consistent field

of the electrons could be neglected as in Lockwood's (1963) discussion.

The conclusion was reached that the self-consistent field was vital and

that self-consistent analysis had to be used. With the present state

of theory the only tractable dynamic problem usi_Ig the collisionless

plasma (Vlasov) equation for the velocity distribution function is the

perturbation of a uniform medium.

The Alouette problem thus reduced itself to the following:

explain the Alouette cyclotron harmonic results using the Vlasov equation

in its perturbation form for a uniform plasma.

For those unfamiliar with the Vlasov equatio_ analysis in its

perturbatior form we give a_1 outline of the basic theory next in this

introduction.

Report Layout

The four parts to this report give the analysis and the

results.
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Part I :

Part 2:

Part _:

Part _:

From the basic theory the first requirement is the so-called

Vlasov plasma dielectric tensor. This is the subject of Part I.

It proves necessary to obtain the tensor in the relativistic

form; the instructive comparison with the nonrelativistic form

is also discussed.

Having obtained the dielectric tensor the next order of business

is the dispersion equation whose roots are vital to the problem:

this is the topic of Part 2.

We are then in a position to calculate interesting features of

the resonant or singular time behaviour done in Part 3, using

a fairly new mathematical technique based on "pinches" by _

poles of integration contours in complex planes, essentially the

same as that used by Nuttall (1965).

The foregoing parts are highly mathematical and so in Part 4

the essential features and results are indicated with a minimum

of mathematics as applied to the Alouette results. Discussions

and suggestions for future work and verification of the present

results are also presented. There is also a critique of other

theoretical work on the problem.

The reading order suggested is the Introduction and perhaps the

Basic Theory and Part 4 at first and then, in depth, the Basic Theory

section and Parts I, 2 and 3. While the results and discussion of Part 4

can be understood without the second reading, following the derivation of

the results requires the careful second reading.
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II. BASIC THEORY

The theoretical problem equivalent to the Alouette situation is

the following: "A certain electromagnetic source in a warm uniform plasma

runs for some time and then is turned off. What is the electric field

afterward as a function of time and space? More particularly, how does

the largest-l_ved part of field vary in the vicinity of the source as

seen by a slowly moving (at the satellite velocity) receiver?"

In view of the fact that the phenomena of interest are observed

involve local values of electron cyclotron frequency the initial

assumptions are those of a uniform infinite plasma and of small

perturbations. (The last cannot be correct very near the antenna. The

Alouette near field is of order 36/r volts/meter (r in meters)).

The standard technique for this kind of problem of a uniform

dispersive medium with some arbitrary source is that of a Green's

function or its transformed equivalent obtained from the time-Laplace and

space-Fournier transformed Maxwell equations and those for the medium.

The transforms will be distinguished where confusion might

arise by their _, e.g. for electric field E(r,t) its frequency

transform is

@o

dt ei_t E_,t)

and the combined frequency and wave number or plane wave transform is

@o

0
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The time and space integrals are thus defined for I _ > 0 and
m

Im k.r < 0 and may require analytic continuation away from the region

of validity for the integral definition.

The two relevant Maxwell equations in rationalized M.K.S. units

are •

Vx_E(_t) = - _o 8t (la)

a_.t) + J(r,t) +V_(r,t) = so 8t J_e(_'t) (Ib)

where Je is an external current and J_ is the plasma convection current.

The Fourier-Laplace transform version of these is

(2a)

- _oE(k,t = o) (2b)

The plasma current J_ will be given in terms of E(k,s) so eliminating

H(_w) gives

,,_ "_ '_) _Co (3)

= j/ao _k x H (k, t = O) - "o_(_t = O) + j_/_e_e(k,_ )
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From some plasma equation one can write J(k,s) in terms of _(k,_) and some

initial conditions and we will then be able to get a solution for E(k,_).

The general nonrelativistic Vlasov plasma solution has been given by

Sitenko and Ste_auov (1956) and by Bernstein (1958) and the relativistic

problem has been discussea by Trubnikov(1958). The relativistic result is

¢

f,(k,w,_) _f d_'G[f (k,t 0, _') + e u'48fo(u')_= ' " m " /

where fl _,_,u_ is the distribution function plane wave transform and

fl (_ t = 0, _ is the spatial Fournier transform at time t = 0

fo_ is the undisturbed distribution as a function of
I

u which is the spatial part of the four-velocity v(1 -v2/c2) -_ while

I I

ua component is 0(I-v2/c2)-_ = o(I + u2/02) j2

Q

_b = eB/m where m is the rest mass

u = u. (ix cos ¢ + i sin ¢ ) * uz_z~ _y

For the nonrelativistic case_, the four velocity, becomes

the usual velocity much less than c and ua becomes I.

The plasma current transform is given by

J(_,s) =- e f d' U_ua f,(k,_o,u)

_p(k,_) & (A,t = O)= -_" (5)

where JS_' t = O) has the special initial terms f, 4, t = O, u') and
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Jp(_,w) the characteristic plasma term with E_(k,_)af/a_. It proves

convenient to group _(k, w) with the displacement current term to give

(6)
The germ in square brackets is the plasma dielectric coefficient

#,¢,,). _ + "e_a_fwmeo

¢

_b wb _u'
(-l)

The dependence on k,s comes from G as well as the explicit w term.

The wave equation thus becomes

W 2

- _L_,_)-7 _L_,w)._,_) - _(k,,) _(k,,)/c' (8)

or

_2

(kaI -k4_k- t-'a"_(k,w)l • E(k,w)

= - j c_ Ev_,t = O) + _ok_x_ _, t = 0)+ eocZ

J (k,t=O)

Thus _(kow ) _(k,w) =.'_ (9)

Some controversy exists among Vlasov theorists as to the results

and limits of permissible initial velocity distribution function perturb-

ations. For a source problem, one avoids this by starting with only the
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external source and allowing the distribution function to emerge naturally,

that is _,Sis taken to be jw _e(k,_)/¢_.

The formal solution for E (_,_) is then

(lo)

where (k,s) " R,(k,s) (11)

_2(k,al) is the transpose of the cofactor matrix of _(_,s) and R.3(_,s) is

the determinant of _(k,_). The subscripts are reminders of the order of

the products in _2(k,_) and R3 (_,w).

Since the _ elements have dimensions of frequency squared, it

is often convenient to define a dimensionless function D such that

One can perhaps appreciate the result more readily if one realized that

the _-I (k,_) is the Laplace--Fourier--transformed tensor Green's function

_' _,t) for the problem. This is evident since we have the following

result on invel-ting the transforms of the equation for _ (_,s) and using

the convolution theorem for the R -I (_,S)o S(k,s) product:

t

_,t) = / dt' / dJr'_'(_-r ', t-t')_(_r',t')

o v

where _'(_,t) is the transform inverse of _-'(k,_) and is evidently
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the Green's function.

The E Green's function or its transform evidently gives one the

option of inserting arbitrary sources, providing the integration can be

done.

If the behaviour of the antenna impedance is a factor (as it in

practics) it is convenient to use the time-Laplace transformed Green's

function _,w) since the impedance is given in terms of s. The equivalent

equation is as follows:

= - I d'r

Failing a more general solution of the problem, simply

studying the form of _' or R is worth while.

Before discussing the behaviour of G' or R there is one question

to settle.

An advantage of calculating _(_,_) or _(k,w) is that one can

see when a singularity appears whose frequency is unlikely to be affected

by the transmitter-receiver impedance (in contrast with a simple pole

which is so affected). However the actual problem can only be soZved by

including in self-consistent manner the transmitter receiver impedance

and the boundary and current field relations on and in the antenna as is

done for free space antenna, well described by King (1956). In view of

the intractability Of the plasma problem this is far beyond the reach of

current theory.

The problem is therefore limited to considering a source with

a plausible specified current or charge distribution for excitation
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(equivalent to a zero impedance source) with n__oboundary restriction and

an ideal non-disturbing electric field measuring device (infinite impedo_uce)

as receiver (an ideal current density sensor (zero imped_uuce) could also

be considered). This procedure is, of course, inconsistent and ura-ealistic

but is the only procedure likely to produce any answer, considering the

present state of theory and the difficulty of the problem.

For the Maxwellian plasma the R_(k,s) elements have no

singularities in the finite complex plane of their argument in the region

we explore. In gener_ the only other singularities of E(_,s) for finite

_,s values will be the zeros of Rs(_,w) i.e. of D. Setting D equal to

zero is the dispersion equation and D is called the dispersion function.

From it one can determine the characteristic behaviour of the medium.

The study of the dispersion equation is the theme of Part 2.

The zeros of D(_,s) do not by themselves single out any

particular frequency for attention, but relate s to k. To obtain some

particularly significant k_ combination an auxiliary condition is needed,

indicating the likelihood of singular behaviour. The pinching or coalescing

of singularities across the integration hypersurface in complex k_ (6-

dimensional) space results in singularities which give the anticipated

singular behaviour. [The Bromwich inversion line is on one side of the

singularities for Laplace transform inversion and cannot be pinched. The

k-pinch however introduces a different s singularity from the usual

simple poles in the s plane.]

If one considers the k-derivative of D(k,s)=0 equation the result

is

8k 8k 8s 8h
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Now the conditions that two roots may coalesce is (part 3)

@D
a_ (_') = o

So long as 8D(_,_)/8_ itself is not zero the singularities in the Green's

function can occur at points where the group velocity is zero, i.e.

8_

_=0

For an observer moving at a nonrelativistic velocity v the
N

8w/Sk_ = 0 condition in his frame of refezence becomes

a_

8_ _V=0

in the plasma frame so the wave packet keeps step with the observer.

Hence one is led to examine the dispersion equation for these

points of zero relative group velocity. [Strictly speaking, the concept

of 8s/Sa_kplaying the role of the velocity of a wave pocket fails as other

terms become more important, so in the vicinity of 8s/Sk = 0 the name

"group velocity" is inappropriate, but is more convenient than inventing

another title for 8_/_.]

Since the satellite velocity is much less (_ 1/16) than the

electron thermal velocity and is very much less (~3xi0"S)than the velocity

of light, a good beginning is to consider the points where the group

velocity is low and can be equal to the satellite Velocity. So far the

approach is quite general. To proceed further one must get down to
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particular dispersion equations and look for the interesting w_ combinations.

These will be discussed in the part on Plasma Dispersion Equations (Part 2).

There are collective plasma zero group velocity frequencies (i.e. explici±ly

dependent on electron density) at the plasma frequency (Wp), near the
I

2

transverse resonance frequency (_p + _b2) _ (covered by Nuttall (1965))and

the left and right cut-off frequencies P +_g ±_ discussed by

Sturrock. (1965)). These do not concern us directly here except for the

connection (observed and veryplausible from theory) between the transverse

resonance frequency effect and that at twice the gyro frequency.

The behaviour near the cyclotron harmonic frequencies is much

more difficult to follow and seems impossible to resolve without the

relativistic formulation.

The general rationale for the layout of the report can be seen

to follow from this outline of the basic theory. The elements of the R

(_,w) tensor and its inverse are products of kc and the elements of

(_,w)_2/c 2. Hence the first step is the study and exposition of the
@m

relevant dielectric tensor elements. This one subject of Part 1.

The dispersion equation (R3(_,_) = 0) is next taken up in Part 2. After

a brief introduction (with an illustrative example) Part 3 discusses the

pinch method and its application to the pinch of interest for the

Alouette cyclotron harmonic. These three parts are fairly mathematical

in nature and so Part 4 is a summ_-y of the work without the mathematics,

and with more emphasis on physics. It also contains the conclusions and

suggestions for future work.
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I@ INTRODUCTION
b

In this report (Part iI), we discuss and simplify the dielectric

tensor of a plasma near electron cyclotron harmonics. A relativistic

approach has to be used since the difference _- rx_b (between angular

frequency and cyclotron harmonic frequency) is less than vtZ/c2 in

many wave number regions of interest. We restrict ourselves to small

, k Zv 2/w 2 less than one. Attransverse wave numbers i.e. we take _ w A t ' b

first we consider general values for _I_ (wave number parallel to

magnetic field) but later we consider only the region k,, c2/_t_ ( I.
P

It will be shown in Part 2 that with such small values of k,,, we can match

satellite velocity to group velocity along the magnetic field.

A relativistic expression for the dielectric tensor s of a

plasma was obtained by Trubnikov (1959) which will not be rederived

here. This expression is exceedingly complicated and simplification is

necessary for further analysis of dispersion equations. For k,, = 0,

Dnestrovskii et al (1964) have obtained such a simplification. Original

contributions in this report are the inclusion of k,, in the analysis and

the derivation of the dielectric tensor elements for complex w and real k

rather than vice versa. The latter extension requires the analytic

continuation of a complicated function.

In the analysis, we neglect collisional damping since it is

negligible for the times of interest during which harmonics effects are

measured on the Alouette.
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II. GE_/tALVALUESOFk,,

Trubnikov's equation for the elements sa_ of the tensor _ is

where

(I) /cos

k. sin2_

c2 / kj.2sin _(1- cas _)

Wb2 \klk,,_ sin

-sin_ il
COS

0
3

-kfsin _(I-cos _)

-kf(1-cos _)'

-kAk,,_(1 - cos _)

(lb)

k_k,%sin

k_k,,_(1-cos

k,,2_z

(Ic)

K is a MacDonald function of order u.
M

(la)

k,,_c__
•,. _ (ld.)

wb

=/nee2/som is the plasma frequency, wb = eB/m is the_p
8/qgul 8/_

cyclotron frequency, vt =/_/m is the thermal velocity and i, ne, e, So,

m, B, c, K, T and w have their usual significance. The wave numbers

perpendicular and parallel to the magnetic field are denoted as kl and

k,, and taken along the x and z directions respectively. In the following,

we denote by p = c2/vt2 , the square of the ratio of light to thermal

velocity and let this be very large.

• L



-3-

K
V

In the very weakly relativistic case (_ >> I), the argument of

is large, and the asymptotic expression

applies. Thus we find

._p__ _/2 e_ (3)
_e_ - 8e_ = _wb Te_

o

(2a)

where T (3) =

kA2c 2

n_-_b-VX_sin_(1-cos_)

_sin
b

kj.2c 2

- s_m_+ _ s_(1-cos_)

k.2c 2

oos_,_ (I-cos_)=

k.k.c 2

_(1 - COS_)

k_k,,c2

_b_"_ _ sin _

kjk,,c2

k,,Zc 2

1 - _b--_-V-_2

(2b)

so that

Next we simplify the expression for R by assuming (klvt/_b)2 _ I,

_b# + _b 2 _2 +i(1- cos_)
(3a)
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where

2 k,2vt2_2 - _-

_b

The above expression for _R has to be used in the exponent.

(3) matrix and in the R_ factor, we can omit the
However in the Ta_

A(I -cos _) part of _R. Thus we see that k_c2/(%2_R = A. A point to

note is that the k,, part of A is multiplied by _2 and _2 varies from

0 to _, so that care must be exercised in any approximation for k,, .

At the moment, we leave the range of k,, arbitrary.

At this stage we can introduce the familiar modified Bessel

function (In) expansion:

e@

exp(A cos _) = _ In(A ) exp(-in_) (4a)

Using Eq. (4a) we note that:

I d exp(A cos _) = V in e-in_
sin _ exp(A cos_) = - E_ Z_J -_ In

d exp(A cos _) = V I 'e-in_
cos _ exp(A cos _) = _ n ($c)

(cos _ -A sin2_) exp (A cos _) -
I d2 _- n2In -ir_

A d_-z exp(A cos _) = LT e

- sin_ . A sin_(1 - cos_)_exp(Acos_)

d d

= i (I n- I' )e-in 



-5-

cose',+A(1-eo_ _)_] e_@. (A a (I _)-_d_+Alexp(Acos_)

r-n21

= Z _ + 2A(In-Inl)]e-in_ ('_f)

where In dIn(A)/dA an& In ' In'/A + (I + nZ/A2)In •

Further observation shows that

_'k_2c2 8 -_R

WbV_R

8 e-in_
_- find that _ = i _ or

and changing variables to t = #_b' we

t = i 8_ exp(-in#? tJ

(_)

(_)

Hence the form for 8a_

E

becomes

1

fr< T2 2 Z

. ' " 7dte'A T-_ (4)exp "-_ 1-it)2+k" czt -

" = ,v _ ' '" -_ 2-2-_¼

n_,,_ o L(l_it)m + . C , •

(5_)

with

- in (In'- In)

n21

__n 2A(in_in ,)A +

0

0

0

aI +k,,

+
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+

and

nl n

0 0 -_-

0 0 ilI n" -

ok
n_A (I n)

-i n' -I

A = [(I-it)2
k,2c2tZ 7- ½ k_vt2

+ _ j , _ i _Z-_b

(Sb)

(5=),(Sd)

Let us now restrict ourselves to A << I rather than A _ I.

In this limit

nZIn nZIn - I ') _ n (In ' - In) = n2An- _
T _ _ + A (In n 2nn! (6)

It is also proper to change the sum over n to start from 0. Note that

= I and the n = 0 term requires a <I 32-_> factor since this termI-n n

is included only once in the summation. Define furthermore a function

_q dependent two dimensionless and k,,c/_ besideson parameters _bn/e q.
I

k 2t2cZTW Sb t7
c _ dt ex_#- #_1-it)2+ II filz J - in#-_-

'7(_rmb-q\ill 'k_)m - ire _m__L(l-it) 2 + kj,2c_t2_ 2 _ (7)

As a result writing _q(_)= + we have for

A<< 1:
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2

n=c

r
n2_n- 1

,,,,,

2_n!

-i _ (b)
n+_

n+_

0

A n
÷

2nn_
0

0

n÷ J

/
/

p

+ ¢_b " 2nn| - 8(r_JCb/¢) i

0

0

-i

0 "Jn+%

o i _(b)
n+_/2

n+_ 0

Before proceedingwith the analysis, it will be reassuring

to show that we can obtain the non-relativistic dielectric tensor

expression under appropriate conditions. Let us use the more general

formula in (Sa).

(8)

in which case,

t

k ZcZt2
(l-it) _+ k''2c2t2-_~ 1-it +

_z j ~ n2_z

When _ << w2 _ _ << _vt

J

the main contribution from the integral arises from t << I (see Sec.V_,



-8-

in the exponent and unity in the denomenator. Also A = _. The integral

we are left to evaluate is

Y7 Ii_t (1 _--_b1 k'c2t'" _v_jdt exp - - _ "2_.. j = e -_' e-X2dx/(k'c' _ = Z(_)(_)

0 --00

(lOa)
where

- n_b k 2c2t2

m_ , x- _ - .-_.'_-ts (lOb)

and the integral is given in terms of the "plasma dispersion function"

(Fried and Conte 1961).

_x2e _ (10c)

Substituting these results into Eq. (Sa) we obtain the well kno_m expression

for sap (see Stix (1962) p. 188 or Fried and Conte (1961),for example):

= '_p2e-_ Z I in(In'-In )Zsap- 8.p _k,vtV _

n= -_\ kAvt nIn

___z

- in(In'-In)Z

rn21

ik_v t

(In'-In)Z'

k_v__n \

In_ /

(11a)

where Z' = dZ(_)/d_ = -2(I + _Z) and noting that (11b)

°vt, 
'k

and (1 + k. _,,1(_. > a--Sk'- ,i z(_) : _ _ _'
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Sometimes it is convenient to sum n from 0 to _ rather than

- _ to _. If one changes n to - n, one notes that I = I whereas the
-n n

argument of Z changes from _a = (w - n_b)/V_vtk,, to _ = (_ + n_b)/_vtk,,.

Since the n = 0 term is included only once, we require a (1 - 8(n)/2)

factor. Thus writing Z a = Z(_a) and Zb = Z(_b) ,

2e-A

n=o

in(In-In)(Za-Z b)

-in(In-In) (Za- _ )

_-_21 2_(In-ln_Z a ++ Zb )

-kAv t nI n
b

-ik.v t

_(I_- In)(Z A+ %)
"--b

-k.v t nl n

(ZaZb)
ik.v t

_b (In- In)(Z a+ Z_) -In (_a Z a + % Z_ )

Finally we note that in the limit A << I and subject to the

conditions in (9), the relation between _ and Z in simply

r

J
(12)

III. THE CASE OF SMALL k,

By small k,,, we mean

k.' _< vt'_'/c4 (14a)



-10-

This limit is of interest since it will be shown that the satellite velocity

can be matched to the wave group velocity along the magnetic field for very

small k, values. Subject to (I$a)

t2c4k,.2 7

_q = _if (l_it)qdt exp_uSt- 2Vt2wz(1 - it)_
o

(l_-b)

- r_ b
where 8 - (142)

@;

Note that in this relativistic approach, we are not faced with the "problem"

of which is smaller k.vt_2 or w-n_ b in the _ argument of the less exact Z

function.

By further expansion, we can now relate the _ function to a

simpler one F, a function of one variable only. Define

Fq(_8) - - i/ dt e_St
(I - it) q

o

(15)

Then from Eq. (7)

dt ei_St 61 - t2c'k,_ it)l=F q---- 2vt2wz (I -(t- it) q
÷ c4k_ "F
__ q-1-2Fq+ Fq+ I )

(16a)

using -t 2 = (I- it) 2- 2(I- it) + I. The same relation holds for

_q(-_r_b/S , k. c/w), if we substitute _(_ + r_b)/W for the argument of Fq.

With this relation we find

a__ =F ÷ (Fq_I-2F ÷F )
8k. q vt-_- q q + 1

(16b)
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0 8

Similarly

a(m#_ ) , = - Fq_ I + Fq

= Fq_ I - Fq

(l_e)

As a result, one can write Eq. (8) as:

= w-_ _ '2nn! - I

n=o kO 0 "

2_;- o
0

J-F(") k-_.L'o,/F(a)
L_ n+_/_ + 2vt'_)' k n+'/2-

n+%/]

k.,c"/'F(b_
2F(b_:, +

_n

2nnl 0 _ n+_

0

k.t_ f'F(_)
.+ 2vt'." _ n+_/2-2Fn(a_+F(n+a_/.}]

k± k.c z "n_n-1
0

0 /

+ _b 2n: o F(nj),7,
--i

F(_) -I (1-+ n._/2J ] 82"_n> (17)
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where

(a)

(b) = Fq_ IFq __

The nonrelativistic limit can be shown to have some validity

in this case if we assume that

1_8>> t or (.-_b)l_ >> vt21c2

Because of the condition (14a) on small k., this implies that

(18a)

- r_b _v t

X_ =_ >> k.--_c > 1
(t8b)

Since (18b) contradicts the inequality in (9), we have to be careful in

applying the Z-function unscrupulously. We now show that the Z and F

functions give the same results provided we limit ourselves to

Im _ > 0. That is we shall not compare analytic continuations of these

functions for Im _< 0 since they differ (see Sec.V_). Omission of the

contribution arising from the analytic continuation (usually of exponen-

that for k._ 0 we omit the contribution to _q fromtial form) implies

the region it = I (see Sec. V). In this case, the approximation in

(10a) and Eq. (12) are valid. To summarize, when the analytic

continuation of the Z function is not required (Im _ > 0) and _> I from

Eq. (18b), we can expand the Z function in Eq. (12) for large arguments

and indeed the exponential part of Z is zero. Thus

z:-g ÷ ; z' --_ ; _z' =_ 1+ (18c)
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Noting as well that

2(_2÷ n'% _)

b

; Za_Zb = - k. _ _ nz_b

4rm_ b
, , k'_"IV_

Za-z b =k.22vt" _ n _b _

where

(19a,b)

we derive from Eq. ('12) that

G@

_p,.e_x _ (_(n) - 2)
=0

×

n2_ b

Ak.vt2 2nZl n

n _b

I"12_)_. "

.[-nZIn

AA AJ.

• v " (_2+n2_J)
- _k. t o--(i_-in)

kAk,,vt2 2n21 n

- (_-n_b)_% _ l

(20)



For _ << I, this reduces to

_ w =(8(n)-2)_-Sa_ = (_z _ n=wbg _
n=o

D

..,._, -i(I+=,)=b

n l (1+e)-_- I + _'1
2 n.

0

0

o1+ 2_L o o
0 I+3_/

0 0

k_k"vt= 2n2kn-1 0

+ (wZ_nzsbZ) 2nn I.

•(w=*n=%_)

-_" 2n_b_

I\
• (w2+n2sb 2)
I'

2_bW

o/
(21)

This 3after result is identical to that obtained from Eq. (17),since for

#8 >> 1.

O0

Fq(#8) = - i/ dte i#St = (#8)-I if

o

Im _ > O. (22a)

-3

Fq - Fq_l = - (#8) -= and Fq_ 1 - 2Fq + Fq+l = 2(#.,8) (22b,c)

We have thus shown that for Im w > 0, the relativistic analysis reduces to

the nonrelativistic one for #8 >> I and k,, zero or very small.
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Near the nth cyclotron harmonic (n _ I, see Sec._), + _ _ r_b,

_I _ _2 = _ say, etc. Besides the n = 0 and n = I terms, we need to keep

only the nthharmonic term. Then we can write e = _A_Sco'-+ s (23a)_warm

where

(%old)=_ =

_ 2 i_ 2sb

ocj% i
- i_p2_ b w 2

w(wL%z) I - _ (23b)

\ °'0 0 I -

For the nonrelativistic case (Eq. (21)).

2_ 2 /1 +_

(Swarm)_ : - wZ_n_sbZ n'An-----1( i(I + a)

2nn' _ V-_/n

- i(I+_) _-_/n

I + _ i_/n

- iV-_/n A(I + 3=)/n'

(23c)
kAk.vt22n

where V_ = _z - nz_bZ • For the warm terms, it is convenient to consider

positive w near r_b independently from negative s near n_ b. When s =n_b, the

contribution from -w is negligible of course and vice versa. For this reason

we restrict ourselves in the following to positive _ bearing in mind that

negative w can be treated in a similar fashion. Thus in Eq. (23c) we can

set s2-n2_=2_b(_-_) if we wish. Similarly for the F function, we only

consider arguments (w-n_b)#/_. A general relation for complex _ is (Landau

and Lifshitz (1960)Vol. 8, Sec. 62):
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Thus for the relativistic case (Eq. 17)

2

n2Xn-1 I _n+_2 + k"2 c4 /
2nn' 0 2vt--V_ kFn+ I/2-2Fn+3/2 +Fn+_2)]

÷

0

0

0
il _ [Fn+_+ 3k"2c4 /

n-T _kFn+_ - 2Fn+_2+ Fn+_2)]

+ m_bn 0 Fn+ _ + Fn+s/2 (23e)

-i

IV. THE CASE OF k,, = 0 AND THE F FUNCTION

For a wave propagating exactly perpendicular to the magnetic field,

the warm elements of the dielectric tensor are for X << I (see Eq. 23dj:

where

w 2 n2_n_1

= _22 = i_12 = - is2, = - w-_ _ Fn+_ (24a)
2nn.,

2 _n

2nn_

i dt ei_St
Fq(.3) = - i . (l-it) q

o

(24b)

c2 _ - r_b
=---T , 8 = (25)

v t

The above relations were first given by Dnestrovskii et al (1964)

who also plotted the real and imaginary parts of the function for real _ and

n= 1,2,3 (see Fig. I). For real w and _ r_b (viz _8_ 0), Dnestrovskii et al

also give the following expansion* for F(_8 < 0) written here in terms of the

Gamma function r and an. integral expressible in terms of the error function_.

* There is an error in Dnestrovskii et al (19_+). The sign of the last term

is negative as given here and not positive as given in their Eq. VIII.
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- r(q) r(q) (l_t)'/a
p=o o

(26a)

p=o

(26"b)

In Sec. V we shall prove this relation and also give a more general

expression valid for complex _.

Since we are dealing with a time decaying signal (after the

satellite transmitter is shut off) or an initial value problem, we have

to consider complex _, rather than only real _. The complex _ is an

inherent feature of the inverse Laplace transform which gives the time

decay of the signal. If we were dealing with a function which is real

for real _ then it is simple to apply the same function for complex _.

However, since F is complex for real _, the dispersion relation which

includes F will require complex k. This situation is appropriate to a

steady broadcasting transmitter with a decaying signal in space. For

our situation however, we are interested in a space localized signal

decaying in time, or real k and complex w. Since we wish k to be real,

F must be reel and this can only be done if we let _ or z = pS, the

argument of F, be complex. Furthermore, it turns out that we have to

define F for both Imz (or Im w) greater or less than zero. That is,

F has to be continued into the lower half plane Im z < O, although the

original definition applies only to the upper half plane Im z • 0.

When F is real, it is shown in Sec.V_that Im z < 0 (or Im w< 0_
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-i_t
In the inverse Laplace transform we integrate over e and we thus

derive a time decaying exponential e-_ .ti . However we find in Sec._l,

Eq. (40d) that _i is of the order of r_b/_ so that this relativistic

exponential decay is negligible for our times of interest a_d the actual

decay must arise from the other time-amplitude factors multiplying this

exponential. Although the exponential decay factar is negligible, we

still need a relativistic approach since the F function has to continuea

throughout the complex _ plane and be used in the region of

Re(_-n_b_< vt2/c= within which most of the s versus k variation occurs.

The nonrelativistic approach is only applicable for I_81 >> I and

Im m> 0, in which case F N (_8)-I , as shown above in Sec._

V. ANALYSIS OF THE F FUNCTION AND ITS ANALYTIC CONTINUATION
9

Starting from

eiZtdtFq(Z) = - i (S-it) q
o

(27a)

where q is a half integer and assuming Im z > 0 for complex z = _8,

we can integrate by parts a sufficient number of times until the power q

is reduced to ½. We obtain

1 _i_ (-1)2zZ ((1)q-_/2zq-_Fq-q-1 + (q- -2) + (q-1)(q-2)(q-3) + ..... + q-l) ....

i(-1_q-_/2zq-I/2 ; eiZtdt* (q,1').... '/2 (I-it)
o
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= (_z) p r(q-l-p) i{-1)q-_2_/_ zq_,/z _ eiZtdt

-r(q) + r(q) ' _ (I- it) '/2

(27b)

oo

Now _ = i ez -@(_z) (28a)

(I-it)V"
0

where @ is the error function. (The above can be verified by defining

a new variable of integration equal to 4z-(I- it).) Furthermore we have

the following equation for the Z function in terms of the error function:

z(iy)= iv_.9(_- _(y)) (28b)

As a result we can relate Fq to the Z function which is already tabulated,

thus

Fq= p_= (-z)p r(r(q)q-l-p)

1

(29a)

?
r(q-l-p) I'_ (-z)q-_ [i4_Z (i_z)_ (2To)

:_ (-")P r(q) +

qf2 r(q-l-p) V'_ (-z) q-_ Z'(i_rz) since
: (-z)P r(q) -

A.IA

p:u

z,(iCz): - 2 [I+i_ z(i_z)] (29c)

When z is real and negative, -z = IVSI and taking _ = ±{_ we see

that Eq. (29a) assumes the form given in (26b) or given in Dnestrovskii

et al (1964). The imaginary contribution in (26b) arises from the region
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around it = I as shown by Dnestrovskii et alwho rotate the contour

through 90°. Note also that for real z, Fq has an imaginary contribution

only for z < 0 (see Fig. I) since q is a half-integer.

To be of greater use, the Fq(Z) function defined above only

for Im z > 0, has to be analytically continued for Im z < 0.

Fortunately, we have succeeded in expressing F in terms of Z, a function

whose analytic continuation has been considerably investigated (see Fried

and Conte 1961). Thus we can allow Eqs. (29b,c) to be valid every_vhere

in the complex z plane using the proper continuation for Z.

The following expansions of Z(_) are valid throughout the

complex _ plane (c.f. Fried and Conte).

@o

z(_): _ e-_'-__ (-_'_/_(1. _)
1=0

(30a)

For I_1>>1 Z(_) : iV'_ e _ _ ;-(21.I)r(l.½)/¢_
1=0

(30b)

where a = 0,1,2

Also

for Im _ > 0, Im _ : 0, Im _ < 0 respectively.

Z'(_) = - 2iV_a_e- _2
2 _ _-2(1+1)+ _ r(1. '/,)

1;0

(30c)

(30d)

Let us now substitute Eq. (30a) into (29b). Using q = n+ _2,

we obtain
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n

rCn+Y=)Fn+_ (z) = _, (-_.)PrCn-p,½)__(=_.)n_

p=O

_._ ,_(,_.)_.1_ l/c(1.% )
l=O

Si_oe [rD + ¾)]-"=r(-1-½)oos[.(1.l)]/. = (-1) z+ lr(-1-½)/.

(see Magnus and 0berhettinger 1949, p. I), the last term becomes (after
@o

changing the summation index i = p-n - 1) _ (-z)Pr(n - p+ ½).

p=n+l

This term completes the series given by the first term, so that the net

result is

Oo

r(n+ _=)Fn,_=Cz ) =

p=O

(-z)PrCn - p + ½) - _'(-z)n_ e z

This form shows that Fq is composed of two confluent hypergeometric

functions which are the two independent solutions of the Kummer

differential equation:

(31a)

d=F dF

.. _. (2-q-_.) _ - F = o (31b)dz q

The two independent solutions are (see Magnus and 0berhettinger 1948, p. 87)

IF,(I, 2-q, z) and zq-1 z,F_(q,q,_.) = zq-le (31c)

Note that

OO

_ ..'_(2- q),F,(1,2- q,..) = rC2.p-q3

p=O

Z Z 2

= I + _+ (2-q)(3-q) + .... (31d)
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so that upon comparing (31c) with (31a) we see that

1 (1,2-q,z)+Fq(Z) = ,F,
(-1)q- _zq- le z_

rCq)
(31e)

Besidss Eq. (31b), one can readily prove using Eq. (27a) the f@llowing

relations:

dF
--_=F -F
dz q q-1

(32a)

Fq_l __Iz - _z Fq; Fq(1-q + z) = ZFq_ I -qF q+1
(32b,c)

dF

z d-_z + Fq(1-q) + q Fq+ I = 0 (32d)

The above series expansions for F
q

cases when Izl<< I.

are especially useful in considering

For large arguments, [z[ >> I, it is convenient to substitute

Eq. (30d) into (29c). Using again q = n+_2, we find

n-1 co

.(n+ _).n+j_z)._ (-z)_(n-p+½)-..(-z)n_eZ- _.(l+_)(-z) n-l-j

p=0 i=0 (33a)

where a = 0, 1, 2 for Im i_z greater, equal or less than zero respectively.

If we write 1 = n-m- I in the last series, then it becomes
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(-_)_(n-m+½) " -

m= n-1 m= -1

(-z)mr (n-m+½)

n-1

=- _(-z)Pr(n-p+½)- _(-z)-P-lr(p+n+_)

p=0 p=O

where m = p in first term and m = -p-1 in second term on right hand

side. Combining this with the other terms in (33a), we obtain some

cancellation with the result that

rCn+_)Fn+_)(z) - . _aC-z)n4_e z

@0

- L r(_tn÷¾)(_,.)p+1
p=O

(33b)

where !yoI=i 1 for Im = 0

\2/ <o

Before we investigate the complex values of z which make F

real (see Sec._, let us briefly turn our attention to the _ function

_d the variation _th k. of the seoond(exponential)term in _q. (31a).

VI. PARTIAL ANALYSIS OF THE _ FUNCTION

Previously we have shown in Eq. (31e) that F is composed of
q

two hypergeometric functions. A similar analysis on _q is very much

more complex. Nonetheless, one of the functions comprising _q can be

investigated for various k,, values. This function corresponds for k,,= 0

to the exponential term in (31e). It will be shown that as k, ranges

from 0 to above _/v t, the form changes from



- 24 -

('1)q'_(_8)q-le#8 to i_r_e%z

r(q) _-_2k.'c2/vtw)

the latter corresponding to part of the Z(_) function. Such an analysis

will also prove the assertion in (9) on how large k. has to be before

nonrelativistic analysis becomes applicable.

To illustrate the change in _q as k. deviates from zero we use

the form for _given in Eq. (14b) valid for
q

V_y : cmk,,/vt_ < 1 where y = k,, c/w (34)

Then since
t=c4k = [y- '" - 1-it_2vtZ='(1 - it) = _ = + ity' ---E_

@o

_q = - ie-#Y2/2 /
y2

.2(I it r(p, I) 2'( - "t)Expanding exp we have

P

__ i e-_Y'/2 _ _2=_P 1 f dt exp [it__2 (28 _ y,) ], = _ (l_it)q+P
P o

= e-#Y'/2 _ _f_22_P 1

P

(35a)

using the definition (15a) of the Z function. Eq. (35a) is general in that

it includes both solutions of the hypergeometric function. We now show
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that the exponential part of F (see Eq. (31e)) can be summed. Denote

this part of _q by _q(1). Then, since z = I (28 _y2) hel'e, v:e obtain

(-1)P÷q-_-_,8 =._+q-1. ,=_p',3_q (1) : _T exp.(8- y')] r (p+q)r(p+l)-/:Y-) (1:_2-;

p

: i_exp[#(S-y2)](1-2_TI2
(valid for

,/i'y <1)

;vhere I is the modified Bessel function. Note that for

real Y and 8, F (I) is purely imaginary only for -28+72> 0 or
q

-2#8 + #y2> O. Otherwise the I function converts to a J Bessel function,

-28 + 72 becomes 28 - y2, the i disappears and F (1) becomes real.
q

(In particular for Y = O, we knew from Fig. I that for real w, F is
q

complex only for 8 < 0.)

We now look at two limiting cases of Eq. (35b).

the small argument expansion of I gives

I

For #yl 81_<< 1 ,

_q(1)=-ie'8(-#I)q-1_[1- _Y'_2212+ #-_81+ g/_8-_l

(Valid for

_v<1 and

_y << I )
(35c)

which is identical with Eq. (16a) in conjunction with (26a) or (31e).

1

For #Yl 31 _>> I, the large argument expsnsion of I yields

q__

,_(1) :- i/_ _.(1_ 2a'_27.J _
O

2

expl-2_lY2-28_ - Y]I

(Valid for

_>y> )

I
We show later than this formula is actually valid for 8 >> y > .--9,1-,_r •

#,,i ui
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form for (1_)
For larger values of y or k., the

is

invalid and we must use the original definition in Eq. (7). Let us

make the transformation

Jy_ + 8• - 2_U

then [(1-it)2+y2t 2] =_ Y _- i8(1-8)_+ 62(Y2+82-28)
[y_ +82_28 ] _

The motivation for the above transformation is that, as we show below,

first order s terms cancel in the expansion of the exponential factor

in _ and only terms of order s 2 or higher survive. We find
q

IE y2+82 -28'
"10

]z 8" ]- q//2iE:(1 - 8 + 62(y 2 + - 28)

where

1

Y _

c°E'- q/c,-,,,>
V-y z +8 z -28"//

(36 l)

contribution_a(1)_ is obtained by taking the lower integral limit asThe

zero, (i.e. subtracting of the o to ic contribution) and letting s * 0.

Note that first order terms in s cancel in the exponential. Thus
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)=_ i(y_'-2a) q/2 e_l;(8-y')+.Wy'+a=-2_l/" ,.8=_2a
yq "_L 1 - y" ]J _ e_

0

(Valid for

y#O)

(36b)

For y<< 8 (l-y== I) and neglecting 8i terms, Eq. (36b) reduces to (35d).

Hence we can extend the range of validity of (35d) as we indicated. Also

1

the lower limit of validity of (36b) is obviously y >,_.

In the third limiting situation of y=>> 8, we find from (36b)

that

i_'q(l) = - _--'_ - _(q- :_/2)] exp[-_" 0 + yS--'r)]
(Valid for

y=>> a)

(36c)

(l-llib)= a== ' " where _' = _"_t = _'_ (3a)

Since iV_e -_= is one of the parts of the Z function (see Eq. 30a) and

recalling Eq. (13), we see that the transition of the _ function to the

Z function has been demonstrated at least for part of these functions.

Comparing Eq. (30m) and (36d), we note that the Z function becomes valid

only for k,, large _enough that y= >> 8 which is the condition given in (9).
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VII. THETRACKOF REAL F

As we indicated in Sec. (4) we are interested in the frequency

track of real F i.e. in finding the values of real and imaginary m for
q

real F . Strictly speaking, we should actually be concerned with the
q

function _n rather than Fq. However, the previous section indicated

the g_eat difficulty in a complete analysis or expansion of _q.
We

restrict the analysis to small k, values for which we get a substantial

component of group velocity propagation perpendicular to the magnetic

field lines, and then the damping of the wave (viz _q(1) in Sec. VI) is

_e mainly concerned withk,,2< vt2m2/c4 i_which case Eq.small_ _ are

to a first approximation and ___= Fq to zero approximation.(16a)applies

Hence the track of real Fq very n_arly follows the track of real _qfOr

very small k,,.

In a nonrelativistic treatment, _(w_r_b)is the real function

that replaces F in the analysis. Thus nonrelativistically, the function
q

to ± _ as s _ n_b. These are the dashed curves indicated in Fig. I.goes

Relativistically, we note that Fq remains real for _ > n_b and is finite

for w = n_b. For real s < nwb, Fq is complex and bounded. The track

of real Fq to be found below is identical for _ > nwb and w is also real
r

here. Beyond this w = nwb point on the track, we can expect the track

for complex s to yield larger and larger values of Fq as I_81 increases

and eventually F goes to + _. There is also a distinctly separate track
q

for negative F for which F goes to - _. These tracks in some sense
q q

imitate the nonrelativistic behaviour.
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The mathematical statement of the above is simple. Werecall

Eq. (33b) valid for large I_81. The positive F track which follows the
q ,,

curve in Fig. I up to _ = r_b is obtained by taking Im i_V_> 0 which is

satisfied since _8 is real and positive here. Hence e - 0 and for _ >> I,

Fq is a decreasing function behaving as (_8)-I. However beyond the _ = r_b

point, we change to the lower sheet for which Im _< 0 or Im i_< 0.(See

Figs. 2a,2b), Although the real part of s initial dips below _b' it soon rises

again above _b' so that the real part of _8 is positive and steadily

increasing. Since a = 2 in this case, F goes to infinity as
q

2_I_81 q-le_SYr(q).°/ Of course we cannot believe our analysis if 8 is

not small, but even for 8 = 0.1, is an enormcus number,

The. negative Fq track is also _readily understood. The track

always lies in the lower half plane. The initial part of the track follows

the dashed curve in Fig. I. Although for this track Im ivy-< 0 always,

and _ = 2, we note that the real part of z m _8 is negative and consequently,

the exponential part in Eq. (33b) decays as e-Izl and F decreases as z-I

for large negative z. However_as _ real increases,the real part of z

becomes positive. Keeping _imag negative (_ = 2), Fq goes to minus

infinity as - 2_I_8 jq-lel_Sl/r(q) (see Figs. 2c,2d). Note that the

singularity of Fq(Z) is located at Im i_z m - _ or z = _ on the lower

sheet. The tracks one must take in either the z or i_z olanes to make

F real are shown in Fig. 3.(If one follows the indicated s points, one gets the
q

tracks for real @ and complex F corresponding to the results in Fig. S.)
q

A schematic plot of the real function F versus the real part
q

of _ is shown in Fig. 4a and an expanded view of the regio_ _lere 8 < I

(the region where our analysis applies) is also shown in _. Below we
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give equations for positive 9q valid in the regions kB, CD_ EFG, and HI

and for negative F in regions 37{, and L_.
q

Let us look at the track for positive F . The region _ is

simply that for which a = 0 and F (z) = z-' for large z. The curve AC
q

is identical to that plotted in Fig. I. Past point C, z starts to

become complex. Denote z = Izle ie and note from Fig. 3 that 2br<0<_

so that initially in CD, e = _ + 8G. Also since Izl is small, we can

uTite using Eq. (3Ja)

Fn+ _/2(z) = _ - _ -

=_n+-_ -

J

I zl _os e+ i sin el_ _ _t_cos_ " " " _ '_" _ sln 0e-_meiOkn +UJ

To make the imaginary part of F zero, we require

I I .I _^

n 2-3- - r(n+ _) ..... sin z i sin e +8 (n+ ½-)-_ =0
4

This is possible for 8 = _ + A8 with

ni h-Jd-Izln4e-Izl
Ae = r(n+_/2)

(37a)

Then

\
Fn+_(z) = n--_-_ where zr = real part of zmt -r ).

(3,7b)
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It can also be easily shown how F is made real for large ]zI

values. In this case we use Eq. (33b) with a = 2.

1 2W(-z) n z
Fn+_ (z) _ ;- rCn÷_) _ e (38a)'

Writing again z = Izlei8 we see that

I

_sin 8) + 2_Izln+w el_Ic°s ee'i_(n+1 )ei(n+½)eeilZIsineFn+_(z ) = (_COSOFZ r(n+_)

(38b )

To have real F, we require

sine _I zln+½ elzlcosesin_zlsine+ (n+½)e__(n+1)]= 0- _ + rCn+_)

(38c)

Let us consider values of 2_ e_ 3_/2 for which cos e > O.

Since Izlis large, Izln+_el zl cos e is very large so in order to

satisfy the above equation, we require the argument of the sine function

to be very near zero.

Izlsine+ (n+½)e - It(n+ I) = 0 (38d)

In this case

,'i n+½_l z I cos
ooze 2_I zln+_el zlCOS8 2.[ zI V_ 8

Fn+_ (z) =-T_-* r(n + Y,) = rCn+ ½)
(38e)

This formula applies along the complete track beyond point E far which

e = 3_/2. Provided Izl<< _ the following approximations are valid

c._-_ _ --Izlcos0 andVt=_b ~ Izlsine (38f,g)
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Near point E, e = _ + A_ andEq. (38d) gives

(39a)

so that

zr IzlAa = A6 and zi (39b,c)

Since zi = P_ir_b A_I2 and zr

and _i in terms of Ae to yield

= # [1-_rn_bA_12], one can solve for _r

(39a)

and

(39e)

Exactly at point E, A8 = 0 and

_r n%[I vt"/_-zh": -vt2 12__i_ c-_ r_b (39f,g)

and Eq. (38e) reduces to

I

= n_
Fn+3,(z) r(n+_/,) - (39h)
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Note that ir is slightly less than_ b at point E. Slightly further

along the track at point F, _r is exactly equal to n_ b again. Solving

Eq. (39d) for A0

I
and e  Qvt'= + (39i)

Beyond point H, the angle e is very nearly equal to 2_, say

0 = 2_ - A0. Eq. (38d) shows that l_IA0= ,n or zi=l_Isine= - _n

andZr = 14cose=Izl-,_/_e.Sincezi = _i_bAil' _d

zr = P[Ir_ r-rl b ) + li2]_@l ' we can solve for _r and li in terms of

A8 to yield

w = and _i - -_n_br_ I (40a,b)

All the structure beyond point H shown in Fig. 4a can be described in terms

of Eqs. (40a,b). However the validity of our analysis imposes the limits

that Ae > n_/p = n_vta/c2. In this case, expanding Eqs. (40a,b) we get

Ir r_b(1 + vtin_ /vt2 n_: ) (40c,d)

For the times of interest in Alouette data, w t _ 104 so that _.t is minute
r i

and cannot accoun_ _or %he _ime_ecay. Thus we see that w. is always
I

negligible even with respect to 10-4r_b, but wr can differ fractionally

from _b" Also solving to first order Eq. (40a) for Ae in terms of _r' we

find that IzI=_n/AG =p(_r-r_b)/W r which is the value for Izl to be inserted

in the following:
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Fn÷ (z)= n÷½el (40e)

namely Eq. (38b) for 8 = 2_.

We can also investigate part of the track for negative F
q'

namely regions JK and LN in both of which Izl is large. Writing

z = Izle ia, _ .<e _< 2_, Eqs. (38a-c) apply. For region JK, e = _ + Ae

and substituting this into Eq. (38c) we find

AO = r(n+½) e-Izl , F = - _ where z = (41a,b,c)

For region LM, we take 8 = 2_-Ae, but instead of taking the argument of

the sine function equal to zero as before, we now equate it to - _.

Instead of Eq. (38d), we have

lzlsino+ (n+½)O -/rn = 0 or Izl o: (n+ 1)/r (_2a)

Equations (40a-d) apply here as well with (n+ 1)_ replacing n_. Also

Izl = _ (_r- rmb)/_r as before and

I

cosS 2_Izln+_ elZlc°Secos(-_)= -2_Izln*_elZ_(n+ _) (_2b)Fn+% (z) : -_K + r(n+g2)

Note that Fn+_2 has the same form as in (40e) but is of opposite sign.

The above completes our investigation on the analytic continuation of the

F function. This function will be used in Part _ to obtain dispersion

curves of frequency versus wave number.
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VIII. CORRECTION TERMS TO THE DIELECTRIC TENSOR ELEMENTS FROM HIGHER A POWERS

In certain cases in Part iwe require higher order _ terms

to the dielectric tensor elements. These terms will now be derived for

Eq. (Sb) and expanding e-AIn(A) to two higher order terms.k. 0 using

We have

- 1-A + +
O--n(A" n!2 n 4(n+ I)

(_+3a)

An---_1_n, A(1+n)e-A(In - In) = nf.2n

I

(_yo)

En- )-I An-1e + =__ 2_ A(2n+
A 2A(In-In' I n12 n I n2 n_-l_n') + A" 2+4-T_T_ + 2n+

(43c)

In the manipulations yielding Eq. (8) from (Sb), we note that every extra

power of A raises the order of q in,_ (or F for k. = O) by one. Thus

we obtain using Eq. (43a).

_ 2 nZ _n-IEF ( I "21-'I= -_ _ n---"T n+_/2- _'Fn+_/2+ X'Fn+_/2 4--'("_'_+
2 n.

(_:+a)

2

(S:):s)warm =''-#I_ --
2nn , n+N -X Fn+,/= + _'Fn+ _ + (4_-b)
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using Eq. (43b)

2

n2 n-1 _F(-is21)warm = (islZ)warm =-N w--_-2nn.' A n+_= - _(1+n)_n_'n+_

and using Eq. (43c)

+_- +I+ (_+c)

2

n____=
(I._._)war, m = -# _ 2nn: _n-1 _ n= Fn+7/2n+_- _ n Fn+_+ 2+ 2n + 4-V_ +

(_)

The additional terms provide correction terms in the dispersion relations

in the relativistic case. In the nonrelativistic limit, they however

predict unrealistically, a completely new wave as is shown in part 2 .

IX. THE DIELECTRIC TENSOR FOR THE FUNDAMENTAL (n= 1) CYCLOTRON FREQUENCY

For the fundamental frequency, the "cold terms" in Eq. (23a)

are incorrect. For the "cold terms", we allow only n = - I in s11 ,s,= and

s33, keeping n = +I for the "warm terms". Thus

-i_ " 2

_2_LC_ i_ b 1- I°

(Ccold)=_= ; ) 2_(_+ %)

0

0 (_5a)

To order _=, the warm terms are given by Eqs. (44a-d) for k, = 0. Thus
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2

(s11)warm = - _L__ _ - _F7/2 + _8 _F_ (45b)

2

(sJJ)warm = - _ w-__F_22 -_F9/2 + _8 _2FIY2_
(¢5c)

(-iSzl)warm = (is12)warm :- _2 EF_ - 2XF_ + _ X2F_ (_Sd)

Xe

(s22)warm = - _2 _F_/2 - _.F_/2 + 8_ _.2F9/2- ]
(45e)

If we wish to include k,, to first order we can use Eq. (23c)

withn =I.

RELATION TO OTHER WOPd(

Trubnikov (1961), Drummond and Rosenbluth (1960, 1961 ),

Beard (1959), Beard and Baker (1961, 1962) and Bek_fi et al (I_I) have

all considered cyclotron radiation from a hot plasma. Their basis is

either the individual particle approach with perhaps some account for

the distribution function or otherwise the full relativistic approach

(Eq. I ) without applying the expansion in terms of Bessel functions. The

values for the dielectric matrix elements are integrated either using a

computer or applying a saddle point method as first indicated by Trubnikov.

They also provide results as k. varies away from zero. However one basic

assumption of these workers is that k2c2/_ 2 = I and _ >> _ which
P

simplifies the analysis exceedingly. Essentially, they consider only the

electromagnetic extraordinaz_j and ordinary waves near the lig_it line rather

than investigating wave dispersion for the whole range of k values with
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A < 1 as we do in Part 2. The saddle point method is useful _hen v_c is

not too small and cyclotron harmonic lines can overlap. In the veer slightly

relativistic limit when the lines are distinct, the Bessel function

expansion is more appropriate.

Demidov and Frank-Kamenetskii (1964) have treated less

rigorously the same problem as Dnestrovskii et al (1964). Their results

disagree and it seems that Demidov's final function, equivalent to our

F function, is in error. On the other h_nd, the works of Rukhadze and

Silin (1962) and Gershman (1961) conform in principle with our and

Dnestrovskii et al's results.

Many authors have treated the line shape and absorption effects

near cyclotron harmonics using nonrelativistic theory. (See for example,

Silin and Rukhadze (1961 pp. 144-7), Gershman (1960).) If k,, is sufficiently

large that Eq. (9) is satisfied, these analyses are valid and the concept

of "cyclotron absorption" is meaningful. Our development here and in

Part 2 covers the range of lower k,, values, after the transition from

"cyclotron absorption" to "relativistic absorption" has occurred.

We complete this report having shown that the relativistic

w - nwb 2c2
> k__ and especially in the regionanalysis is necessary for w

(s- r_b)/W < vtZ/c2 and k, < vtw/c2. The transition to the nonrelativistic

case has been clearly illustrated. The necess_ry dielectric tensor

elements have been derived with which we can investigate the dispersion

of waves near cyclotron harmonics.
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CAPTIONS FOR FIGURES

Fig. 4a:

Fig. I: Graphs of the real and imaginary parts of Fn+s/2(_8 ) for n = 1,2,3

versus _ = when _ is real. The dashed curves,

(_8)-I , are the asymptotic limits for large _8 and represent the

ncnrelativistic functions replacing F.

Fig. 2a: Position of i_z in the complex z plane initially_for the positive

F track when w _ n_b.

2b: Position of i_z for the continued positive F track.

2c: Position of i_z initially, for the negative F track.

2d: Position of i_z for the continued negative F track.

Fig. 3a: The two tracks of real F in the complex z plane.

The positive F track runs from _ = - 0 through s = r_b and

then turns to the lower sheet. The negative F track runs from

= 0 on the lower sheet. Both tend towards the singularity of

the F function.

The same tracks in the complex i_z pls_le.

Schematic plot of the values of F versus real part of s for

complex _ and real F. The rectangular cut indicates the region

where the analysis is valid.

Fig. 4b: Expanded view of region where analysis is valid.
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HARMONIC RESONANCE REGIONS WITH

APPLICATION TO THE ALOUETTE

I.P. Shkarofsky
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- ABSTRACT -

The dispersion of waves near electron cyclotron harmonics

is investigated including to first order, wave numbers parallel to

the magnetic field. The proper relativistic form for the dielectric

tensor elements is applied. Distinct different behaviours result

depending on whether the wave number or frequency is taken to be

complex. In the former case, the waves near the Appleton-Hartree

values are localized and a gap exists between them and the plasma

wave. In the latter case, no gap exists except as one tends to

zero wave number where the dispersion curve indicates a rapid rise

in frequency above the harmonic. Matching points of satellite

velocity to the wave group velocity are found for the extraordinary

and ordinary waves. The relativistic formulation is compared with

the nonrelativistic one and the differences are noted.
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I. INTRODUCTION

In this report we investigate the dispersion of plasma waves

near cyclotron harmonics applying relativistic analysis and comparing

the results with those found using nonrelativistic analysis. Whereas the

latter predicts for k. = 0 three waves (i.e. three values of real w for a

given real k_) near each cyclotron harmonic, the relativistic analysis

requires either complex k or complex _ with totally different dispersion

curves very near _ for the two cases. For complex k_ and real _, it

will be shown that we still get the extraordinary, plasma and

ordinaryi_)waves but with gaps in the k_ spectrum, that is regions where
t

one cannot obtain a real _ for a given complex k.. These gaps effectively

separate the Appleton-Hartree and electrostatic plasma waves. On the

other hand, for complex _ an_ real kA, we can cover the complete kA

spectrum except for a very tiny region near k. = O. Furthermore, there

are now only two waves (the ordinary and a combined extraordinary-plasma

wave) instead of three. These results are in essence the original

contributions in this report on the subject of dispersion of cyclotron

harmonic s.

Dnestrovskii and Kostomarov (1961, 1962) have computed for

k,, --0 the dispersion curves from the nonrelativistic analysis. In this

report we give analytical results for values of kA ( v/_ b and show how

the three waves are derived. For the electrostatic modes, we investigate

more fully larger values of k_ and determine the points where the group

velocity is a maximum and where it is zero. Plots are given of group

velocity versus k..
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In order to apply the above results to Alouette cyclotron

harmonic data (Lockwood, 1963), we have to include the motion of the

satellite. If the transmitter were stationary, the longest lasting

response is derived from "stationary waves", i.e. those with zero

group velocity. Since the satellite is moving, however, the longest

response comes from waves moving at the satellite velocity. We shall

prove that such a match can be accomplished both parallel and perpen-

dicular to magnetic field lines. We need exceedingly small values

of k,,. The value of kA can be either of the order of the free space

wave number or an order of magnitude less than the free space wave

number. The Doppler shift in frequency is always very small. Further-

more, the small value of k. necessitates a relativistic approach (see

Part I). Other possibly matching points as well as zero group velocity

points will also be pointed out for both the relativistic and

nonrelativistic analyses. In particular, it will be shown that it is

very difficult to match for harmonics greater than the fourth,

velocities perpendicular to magnetic field lines using the electrostatic

modes.
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II. THE DISPERSION EQUATION FOR k < I AND k,,2c4/vt2s2 < I

(a) Basic Relations

We shall derive the dispersion relation for very small k.

and moderately small k. given by

m kA'vt2/Wb2 < I and k,,2c+/vt2_2 < I (la,b)

where kA, k, are wave number perpendicular and parallel to magnetic

field lines, wb = leB/m I, vt2 = KT/m, and e, m, B, c, s, K and T

have their usual significance. The analysis will use the relativistic

dielectric tensor elements expanded to first order in _ and k. 2. We

shall point out in Secs. III and V the corresponding nonrelativistic

results and the substitutions required to obtain them.
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The dispersion relation for waves in a plasma is

k_c2 c= kk_ ÷ = 0- 7--8_ * _-_ _=p
(2a)

We write sap = (saD)cold + (s=_)warm, which are respectively the cold

Appleton-Hartree dielectric tensor elements and the "warm" elements

associated with a particular cyclotron harmonic. Thus

I kZc 2 c2 kak_ + + (sa_)war m [ = 0 (2b)-7- 8_ ÷ 7 (%_)cold

We now insert the dielectric tensor elements given by Eqs. (23b)

and (23e) of Part I of this collection. The determinent D to be

evaluated is with kA along the taxis and k. and B along the z axia:

O=D=

{_:. kZ(n-1)c2 2_-_P(p+_k,, k_k,,_ _ -_'k 2 (n-l)c2_. _ _)

i

-_×+k#( n-I)c2w2 P(P+_k,2,)_

k2c z - 2(n-1)c 2 - 2"
K.t.--.._.z--- k=" -",_'P(,p*13k.)

ik k c4 ^k 2(n-I)
- _ .w-r_ _

c4 2(n-I )7ik±k.-m" Qk_

k_¢ 2 2

K,,--"'_'_-- - k_2n _ P' (p'+_' k_)

(3)
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where K. = I-

(_ 2 _ 2

P
(_Z_WbZ) ; K.= I -w--_-;

@.1 2W.

-_---K (_a,b,c)

w__(/Vt _.(n-1)n2 oJ 'o_ /vt x2(n-1) __;n2 -2_/'"vt,_2nI_
P=

n'2 n SbJ n'.2n

($d,e,f)

C 4

-_(Fn+y2 , 2Fn+._/_+ Fn+ % ) ; r/= Fn+_4- Fn+54
P = Fn+J/-/z(PS) ; _ 2Vt2¢2

(4g,h,i)

p'= Fn+ _ ; c_ c2 ¢-m_b_'= (Fn+_ -2Fn+_+ Fn+_); P=V--_ ; 8- o_

(4j ,k,l,m)

Also Sp =Vnee2/som is the plasma frequency, k2 = k_ 2 + k, 2, ne

density and n is the order of the cyclotron harmonic (n_ I).

is electron

The function

F is defined by
q

@@

_o eiZtdtFq(Z) i - i (I- it) q '

and was investigated at length in Part I.

(b) The Extraordinary and Plasma _des

Let us restrict ourselves at present to the extraordinary and

plasma waves; later we consider the ordinary wave. Since the ordinary wave

is associated with the 33 element of the determinant, for the other waves

the warm part of this element is of higher order in A and can be

neglected. That is we approximate the 33 element by (K. - 2 2% 2_- K_ C _ ). Now

let us expand the determinant by using the subdeterminants of the 33, 32

and 31 elements and dividing the result by the 33 element. We obtain after

some grouping
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(n)I. c6 QT/k 2(n_I ) ce QT/k 2(-1)

2 2 --_ -- .... 1

kA 2k.2c4

r kJcZ-] _K.- V--'-7- K. •

(Sa)

The above form is useful only for small k. A somewhat

_ifferent grouping yields the following dispersion equation, useful for

larger k values.

D __. k 2cZ h k 2c2k

I ,_ k 2O
+ 2k_2(n-2) p(p +_k_ )(K_+ Kx- k "20'h_-_-,}-/-_k'2e' _ m" - _'-_kf c. /].

:K,,-7- /

+
2k.ic 2

P(9+_k. ' )+

2(n-2)

r ktc'-_t,_-+"=- 7)
If"-

k2c , P(p+13k.' )kS (n-2)

+ _ [K.- T]k'=c"

]

+ ('w"_---) k'c" - 2(K.+ k'c_'\r- ,<.,.'c:_h7 _=-"_"_-)-I:°
LK.-

(Sb)
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An order of magnitude comparison of the terms involving Q with

the product term P_k. 2 shows that all the Q terms are negligible for the

ranges of k. and kA of interest. In particular, the Q term within the

x J bracket (where x -= k.2c2/w z) is negligible with respect to the P_k,,2

within the x bracket. Furthermore both the second and third terms are

negligible compared to the first within the x 2 bracket. Thus Eq. (Sb)

simplifies to

(6)

where K I = KA + K

W 2 (_ 2

: I-,(.,_%) ; %:K.-Kx:I-,(.,__%) (7a,b)

w 2 k.2 c2

: P ana x =. _"-7 (7c,d)K. (Kl +_)/2 : _-(_,, _%, )

The quadratic equation (6) in x can be solved when

pk.2(n-2)(p+_k.2)" (< I. The smaller x solution is

X " (8a)
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which is the oxtraordinary

solution is

electromagnetic mode. The larger x

k2c 2

_K_ k 2C2 K.--_ (n_2)p(_+_k.2)_ (8b)

K. - _--_

which is the mode for large wave numbers. If we consider real _ and

complex kA or x, then p lies within bounds af order one in magnitude

(see Part I ). Since PkA 2(n-2) is always less than one for A < I, we see

that the.above conditior, on Pk± 2(n-2) p << I is satisfied. As a result
!

the solution of Eq. (6) can never deviate much from the cold em mode or

large w_ve number, mode. One cannot propagate a wave for kA values

between these two modes.

The situation for real k. or x and complex w is different.

As shown in Part I , the F function or p can be continued into the lower

half plane and can attain huge values. In fact the product pk.2(n-2)p

can easily become of order one. Under these conditions one can obtain

solution_ of Eq. (6) for any value of x.

In particular let us look at the solution for x < Io Then

either Eq. (6) or (Sa) yields

(5_= k 'c'\_" i k_'c' _ ) c"D = 2-w"_-')Qr- 2kA2(n--1_--_P(P+_k"_)3

k_ (4 k.2k.2c 4 r- k2c 2-]
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In particular for x << I and k.2c2/_ 2 << I, we have

D 1-_ - k 2c2 k 2c2= - = o (gb)

This is the simple form the determinant attains as k * O. Since the first

factor is non-zero, the dispersion relation is approximately

Kr- 2kA2(n-l)cw--_z P(p+JBk.') = 0 (9c)

'" - . " . 7

In the analysis above, we took kA along the x axis. To evaluate

the Green's function we have to obtain the ratio of the subdeterminants to

the determinant including the _ angle associated with a general kA in the

x-y plane. (In the evaluation of the determinant itself, the k 2 and k 2
x y

wave numbers combine to give kA 2 independant of 4, which accounts for the

reason why we were able to restrict the k. direction.) For the situation

A < I that we have considered above, the modifications are very simple.

Essentially all sin _ or cos$ terms which appear in the warm terms are

either multiplied by higher power of A or by the Q term which is

neglected in any case. Thuswe only have to consider _ terms in the k k_

part of Eq. (2b). With this modification, the 11 subdeterminant --after

dividing by the 33 element as we did for Eq. (Sa) -- is

k 2C2

R11 = KL -'_

k. 2c2
w_t-" cos2_ - k. 2(n-1 )_- P(p+JBk.' )

k.2k. 2c4sin2_
(10a)
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where kx = k. cos@ and ky = kA sin@. The last term is negligible

compared to the P_k,,2 term. Similarly the 12 subdeterminant is

RI iEKx+ k.2(n-1 ) cZ )_ k'2c22 = _--_P(P+_k"2 - V sin@ cos@ +

k.2k,.2c4sin_ cos@

_4 _, _ _-_f---JkA_cZ_

(10b)

The subdeterminants RI, and R12 are the relevant Green's function

parameters for excitation by a source of current flow in the xy plane.

Let us average the ratio R_/D over 4, assuming that the only

@ dependence is that shown in R _(and neglecting any @ dependence associated

with satellite motion). Using the relations:

fl1cos2¢

d_ eiz sin ¢ =
sin2@ ,

\co. 
o

jo(Z)÷j (z)2

J (_)-J (z)
o 2

o /

where J is a Beseel function, we findfor_iUjD =/e-k_rc°s@1%i_d_

and

(11)

(12a)

c'= -_ P(p+_k,,2) Jo(kAr) (I2b )

where r is the distance of the detector or receiver from the transmitter.
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For satellites detecting their own transmitted signals, r is the distance

travelled by the satellite, r = Vt where V is its velocity and t is the

time after transmission. For the case k.r = kAVt<< I or for times

t<< (k.V)-', we can neglect J2(kAr ) and approximate Jo(kAr) by one.

Usually this condition is satisfied for x = kA2c2/s 2 _ I. Note that in

this situation we also have

k 2c2 2k2 )_2,, + iR,_, = K,r- _ x2 - (n-1 P(p+_k,f) (13a)

and

k__ _ _x
R,,-iR, 2 = KI - s. 2 (13b)

Using Eq. (9b) we find that for x << I,

RI, + _ z/D = FK_ x k.2c2-1 -'
-L _

(_)

which has no warm term in it and hence is of no interest for cyclotron

harmonics. We also find

R, 2-iR, 2/D = _r- 2kA2(n-1 )c7 P(p+_,, z)_ -' (14b)

which has interesting cyclotron harmonic parameters. (Compare Eqs. (14b)

and (9c).) The above two equations also indicate that as x * 0 or k * 0,

the cyclotron harmonic wave becomes circularly polarized since only the

R,, -iR, z part has to be considered. This part is also most important if

a circular wave in the xy plane is excited by the source current.
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(c) The 0rdinar_ Wave

Besides the extraordinary--plasma wave mode, there is another

wave associated with the 33 element of Eq. (3), namely the ordinary wave°

To obtain the dispersion relation for this ordinary wave including first

order k. terms, we expand D and divide this time by X, where X denotes

the following combination of elements [(11)(22)-(12)(21)], vim

X = [K;! - "_z'_mk2c2 k.2 c2-l_jL I- _'_ _ _k'2c z - 2k.2(n_1 )a:zp(p+pk{__k_c_2-

(Ipa)

To obtain any noticeable deviation from the "cold ordinary wave"

K.- kj2c2/w z = 0, we require kA2nc2p'p'/_ 2 to be of order one. In this

case we no_e that the kA 2(n-I) c2 Pp terms are much greater than one by

order _- I , so that in X, we can neglect Kr, k2c2/s 2, etc. with respect

to the warm term.

_ _x = - _ 2(n-I)_ p(p+pz_,_) __

(_pb)

Similarly in evaluating D, we keep only products of warm terms, vim

pQ, QZ and pQ2. The pQa and PQ terms cancel. The determinant thus becomes

the following, after division by X and then inserting Eq. (15b).

p 2 2 4
k'aca ks 2n ca ca ,p,_9_W c-_-_

" K, 1 --7-- _ P'Pf-k'L_''2 7 pp A ]

(16a)
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Now from Eqs. (4f,g,i,k) we have

p,_, _ w 2/vt\2n I c4 2(Fn÷3/2"Fn+_ 1- pp_ = vt-_) _ 2vt_ 13Fn+½ - 6Fn+ _ 3Fn+ _- Fn+ _

W 2 0 4

(Vt_ 2n I 2v_/_TIVFn+_..SFn+_÷3Fn+ _- 2FZn+_/2/Fn+'/,}

i p,_.

 c'I /where 18" = _ 7Fn+_- 8Fn+_ + 3Fn+_- 2Fan+_ Fn+_
(16b)

The dispersion e_ for the ordinary wave is thus

k& 2 C2 C 2

D = K.-_ - k.2n _-'ZP'(p' + _"k. 2) (16c)

The subdeterminant of the 33 element, Rjs, after division by X

and approximating as in Eq. (15b) is simply unity, (even including _ terms

in k k_). Hence

_K k_ 2cz c2 )_" --D = " - 7- k'2n _--_P''(p'+_"k"a and _: _Jo (k_r)_ .R.._.3

( 6d)

if k.r<< 1. This ratio is relevant for the Green's function if excitation

is caused by a current source in the s-direction.



III. THE DISPERSION EQUATION FOR k,, = 0 AND A < I
I

In this section, _ restricting ourselves to k,, = O, we can

investigate more fully the higher powers of A neglected previously.

Using the proper relativistic approach, we find the additional terms

negligible except when _I = x. If, however, we incorrectly insert the

nonrelativistic limits into the relations in the region where they are

not applicable viz. where _ < I, a new wave results. This wave has

appeared in calculations of cyclotron harmonics upon ad hoc application

of nonrelativistic analysis (e.g. Dnestrovskii and Kostomarov 1962 J

see Sec. V for a full dlscussion_

For k. = 0, the dispersion equation (2a) for the extraordinary

and plasma waves reduces to

¢,,(s,2 - x) - e,,s2, = 0 with x = k2c2/_ 2, k = k.

(17a)

Inserting the cold elements given in Eq. (23b) and the w_rm elements

given in Eq. (_J+)of Part I , we find

A2 _ / n+2

KIKr-xK'-i_k2(n-2)pEFn+_2- _ Fn+_ (l+n)+-_n+_t4--_+ I + 2_

k2(n-2)pT_.KI. (2+n) x.k2 (n-2)pEFn+_ Fn+_2(4_ + _- nZ (n+1_ Fn+ 7/2+ - "kFn+_/2+ _
"i

k4(n-2) P2x2A2[- fn+2 F2+ n""_l_l_Fn+_'/_> Fn+_/: tn-"_") - n+'/2 =0
( Tb)

where K1, Kr, K., P are defined in Eqs. (4) and (7) and where k = k2vt2/Sb2
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If higher powers in _ are neglected in (17b), we simply obtain

KIK r - xKA - 2XKlk2(n-2)PFn+_2 + xmk2(n-2)PFn+_2 =
0 (18a)

or

-t
_- b22nn' 2 I (2K1 - x)x

or Fn+ - Kl%- (18b)
P

Since k2(n-2)P is extremely small, Fn+ _ has to be large for x to deviate

away from the electromagnetic mode (KiKr= KAx ) or the electrostatic mode

(x>> 1). For large F all x values are possible except when x* 2K1 for

which we might seem to require F*_. This however is not necessary since

we then include the higher powers of _ given in Eq. (17b). In fact, when

x = 2K1, Eq. (1Vb) gives the following equation that the F's have to

satisfy.

/-_k2(n-2)P Fn+_/2 I1 k 2(n-2) _.PF._Fn+3/2Fn+7/2 ':tt'n+2'__ Fn+5/2-_l= ÷ v L Fn+ _ kn+lJ
419)

Thus a higher order of magnitude of F is required, (_k2(n-2)P) -' instead

of (k2(n-2)P) -I . Equation (17) also shows that the only case we need

these higher _ values for _<I is near x = _l"

We also note that for n ) 2

2 2

_r)= 1 -w(S._b ) ; K.I" = I -w_,fSp_, (20a)

whereas for n = I, we use Eq. (45a) of Part I to find equivalently that
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so that

2
W

_ P

K. = Kx* 1 = I 2_(_*_bl

2 KI+I
2K_= 1- *,r_*%) , _ = t , K. -

(20b)

w2 vt2 1

and Eq. (18b) becomes --_ c-_ F_=
(20c)

Real _ Complex k Curves

We can now plot s-k dispersion curves based on the above

analysis.

complex k.

First we consider the case of real s, complex F and hence
q

Then we investigate the case of greater concern to us,

namely real Fq, real k and complex _.

When w is real, the complex function F is plotted in Fig. 1
q

of Part 1. We note that both the real and imaginary parts of F lie
q

within bounds of order one. As a result k2_n-2)P F is an extremely
q

small number for n> 2. Noting that KA= (_+ Kr)/2, we can readily

solve the quadratic equation (18a) to yield under these conditions:

K1Kr (l_k2(n-2)p Fn+_/2 K_---_2 )x- KA
(21a)

KA KIK r K.

= + ?-El- K--_ = (21b)
and x k2(n_2)p Fn+J/= k2(n_2)p Fn+3/2

The first solution in Eq. (21a) only exists if KIK/K A is

positive and then it represents the Appleton-Hartree equation (extraordinary _ode)
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kZc2/w 2 = x = _K_/_A with a small correction term (for n> 2).

For n = 2, the correction is noticeable. (The n = I case is investigated

separately later.) The slope 8w/Sk at _ = r_b is altered negligibly by

the warm terms for n > 3. To see this, let us evaluate 8k/Sw= (8_/8k) -I .

Note that F is real for w _ n_b and at _=_b' using Eq. (31a) of Part I,

we have

I

-- d( 8) =FnW,- Fn,'A= - (n" - 'A)

(22a,b)

a2Fn+_ 2 a(_8) "_b
and a_ :

d(pS)" =inz'- '_ )(n- _,/=_ ; (22c,d)

From Eq. (21a), one finds that (Sk/Ss)/(k/w) involves terms of order Cl,

a constant, and a terms of order (vt2/c2)n-3cl. This latter term comes

from the derivative of Fn+ _. One sees that for ns 3, 8s/8_w/k) = ci

with the warm terms contributing about the same as the cold terms,

whereas for n> 3, 8w/Sk/(w/k) = c, again but the warm terms give negligible

correction. For n = 2, the warm term is larger by c2/vt2 and therefore the

dominant term. In fact for n = 2

(8_'/_ k) K.vtw b _2
./k 1 : 1"5( K'_'le_. '/ (22e)

= _b

Hence the slope is very minute at this point, changing greatly as

recedes from r_b. One also notes from (21a) that for w _>_b' x< _K/KA

since F > 0 whereas for s << _b' F is more or less real and negative so that
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x> KIK/K. (see Fig. I of Part I ). Hence the dispersion curve has a

"wiggle" around r_b. This wiggle is large only for n = 2 and negligible

for n _> 3. See Figs. la and Ib where this behaviour is illustrated.

The dashed part indicates the region where k is complex.

For n = I we use Eq. (20c) and note that since F_ is of

order one, x is localized around 2K1. In fact

_2 K12 Vt2 (23)

The warm term provides a negligible correction (see Fig. Ic). This

solution exists only if Kl> 0.

We now investigate the other branch of the dispersion curve

associated with the solution in Eq. (21b). This solution occurs for

large values of x when n> 2 but even for n = 2, it is separated completely

from the em waves. When n = 1, Eq. (20c) shows that no extra solutions

exist for x >> I so that this effect or mode does not exist. Equation (21b)

can be written in any one of the following ways (using Eq. (4d) for P).

k2(n-I ) vt,/%,hn_S f _ 2 br___ %' _ n ,- 2 n. (2aa)

2 1

kz = I_--_tln Sb2 Sb2 _ 2nn'w2)zW - -%'JFnW,(%
(_

n-2

k2c2 /c2 _n---T_b 2 C/_b 2

tW; 7 Lt V-

I

, Sb 2 _ 2nn:s__ _"C_

sz -_b2/ Fn+_/2(n_b)Z J

(2Z,_c)
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We thus see that k2_F -I/(n-I) • Using the plot of complex F versus p8 in

Fig. I of Part I; we present here in Fig. 2a, a polar plot of F
real

Fr-1 -I and in Fig. 2c, F -I/(n-l)versus Fimag , i_ Fig. 2b, versus FI .

The latter can be used to give the variation of kr2 versus p8 when

z 2 _b2/(_2 ). See Fig. 3a. In the oppositeK.> 0 or _ /_ >
ID P _b 2

situation when KA < 0 or _b2/Wp 2 < _b2/(w 2-_b2), we present in Fig. 2d,

2e, 2f plots involving (=F) similar to Figs 2a-2c. The dispersion curve

is shown in Fig. 3b.

The dashed portions of the curve are the regions where k is

quite complex• Figs• 3a and 3b show a minimum k or _ value below which

the dispersion relation cannot be satisfied• This minimum value is much

. °

larger than the k values associated with the extraordinary em mode•

In Figs. 4a to $d, we show to_ether the em and es modes for the

4 possible situations, namely

(i) KI>0, Kr> 0, K.>0 (ii) KI<0, Kr<0, K.<0

(iii) _>0, Kr< O, K.>O (iv) _>0, _<0, K.<O.

Let us now evaluate the group velocity of the es mode when

K±> 0 at the point s = r_b. Write k equal to _2_-l_imes a factor which

"I

is more or less constant with respect to w. That is, we assume that the

crutial variation in s is due to F. Using Eqs. (22a-d), we find using

@k/@w = i/(Se/Sk)

2

vt= 2(n-I )(n--_) _ (25a)

=r_Jb
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Also since 82k/Sm 2 = -82m/Sk2/(8_/Sk) 3, we can evaluate the

next derivative to obtain

82w/B-k2 [ 4(n-1)(n-½)s vtZ= (n-%)
I

_=_b

(25b)

These relations indicate that the slope and curvature of the

es mode are very small. The slope only becomes large in the immediate

vicinity of the turn around point where k is quite complex.

We also note that the nonrelativistic limit for F is

4

F =_ _vt2/_z(@-r_b)_ = 2_2 vt_c_

The latter expression includes -_ values as well. Equation (26a)

applies outside of the relativistic range at both ends of the em

solution, but 0nly when KA> 0 and m > n_b for the es-solution. In the

latter case, one can write using Eq. (2A_a)

(26a)

_2_n2w2 b = vth \2(n-1)I___bl2( I _2 m--_b_Wb2-I
2n. p

(26b)

which is the usual relation quoted for the Bernstein (1958) es mode when

_<< I. Essentially Eq. (26b) is equivalent to s11 = 0. If we wish to

include higher values of _, we substitute e-_In(_) for _n/2nn' (see Eq. 20

of Part I) where #t = (kVJ_b)2. Equation (26b) becomes

2

_2 _ n2mb2 = 2_p2n2in(_)e _ _ (26c)
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Besides the extraordinary wave, of great importance is the ordinary

When k. = 0, its dispersion relation is simply

Sb2 2nn '. x

s_ = 0 or _ n-1 = s z (27a)

P k Fn+5/ (_-_)
/_ I- - x

where A = k2vt2/Wb 2 and x = k2c2/w 2. Because of the bound character

2 i°e when the
of F for real s, a solution exists only when s2_Sp ,

denomenator on the right-hand side is near zero. When n> I (including

n = 2), one can readily show (see Fig. 4e) that a wiggle occurs in the

dispersion curve similar to that for the extraordinary wave and that the

deviation of k from the x = I- Wp2/S 2 curve is very small.

When n = I, the wiggle is quitelarge. Neglecting higher order

terms (viz _F9/2<< I), Eq. (27a) is valid for n = I also and reduces to

W 2 _ 2

(27b)

In particular at w = Sb' F_ = 2/5 and

Equation (27c) has been derived by Dnestrovskii et al (1964) and Gershman

(1961). If we keep higher order _ terms, we find using Eq. (_J+b) of

Part I and Eq. (20b) that

2W2 (_ 2 (_ 2
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Real k, Complex _ Dispersion Curves

In contrast to the real _ situation, a slightly complex

frequency permits dispersion for all k values except a tiny region near

k = 0. The reason for this is that F becomes very large for complex u

(see Fig. 4b of Part _) and the k variation in Eqs. (18b), (24c) and

(27a) is unlimited. The dispersion in the regions where the nonrelativistic

analysis is valid is identical to the reals case. As pointed out

previously these regions occur when I_8_>>I at both ends of the em

solution and when u>n_ b and Kz> 0 for the es solution.

Let us consider 4 possible situations for the dispersion curves

illustrated in Figs. 5a to 5d.

For the high-frequency case in _ig. 5a, _, Kr and KA are

positive and _>K r or n_b>UR>UT>U L where UR, uL and _T are the u

values for which Kr = 0, KI = 0 and K z = 0 respectively:

%
UL- 2 +

2 ½ i

+ Up ; uR =7+ = ubp,, + .

The solution for the combined extraordinary-plasma wave is that given in

(18b) with the correction in (19) when x = 2K1. We also require the

plot of F versus Ureal given in Fig. 4b of Part .I, We can follow the

Bernstein es mode from large to small _ up to _ = n_b using real u, real k

and the real positive branch of F. As k further decreases, we continue

using Eq. (24c) along this positive branch, passing through a minimum

= _ or 8F/Sw r = _ in Fig. _b of Part 1. Thenur < n_ b value when 8k/0u r

the curve passes again through ur = nob (see Eq.(39i)of Part I ). The

frequency rises steadily above nsb as k decreases and x * 2K1 since F
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appears to be infinite at this point according to Eq. (18b). i_owever

Eq. (19) limits the maximumvalues t_hat F _nd s attain. Essentially

around x = 2K1, coupli_ occurs between the F > 0 and F < 0 branches

which accounts for the awkward behaviour° For values of x( 21(1, we

therefore shift to the F< 0 track and the dispersion curve connects with

the em wave when w (< r_%. On the opposite side of the Appleton-Eartree

solution, we again use the F_ 0 track. We follow the same behaviour as

for the es mode, with s decreasing slightly below _b and rising again.

The most remarkable result is that near k = 0, F becomes larger and

larger resulting in _ increasing more and more above r_b rather than

tending to n_bo As _ increases above r_b by an appreciable fraction

of r_b, over analysis which restricts w to be near r_b, fails. A full

investigation of what actually happens then, is beyond the scope of this

work and is actually not necessary for further analysis.

The low-frequency case, shown in Fig. 5b, is for KI( 0, K ( 0

Kl< 0 and IKrl > IKll or _b<WL<WT<WR" Equation (18b) becomes

Wb2 2nn' _ I

2_n-2n2 j Fn+_2 - IKIK I+IK.I x
P

(21Kll+ =

For large k values, we must choose the F< 0 track and, since no

Appleton-Hartree solution exists, we follow this track for all lower k

values as shown in Fig. 5b.

The high-intermediate-frequency sit uation in Fig. 5c is for

Kl> 0, Kr< 0, K.> 0 with _ 7IK for wL<_T <r_b <'_R" In this case,

08b)is
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-x)x

1K!Krl + K_ x
P

For large k, we must use the F> 0 track which can be followed for lower

k values up to x = _I" At x = _l' we apply the correction in Eq. (19).

For x< _I' we change to the F< 0 track and continue for all lower k

values.

_ or _L < n_b < ST < _R'When _> 0; Kr<O , K.<O with I%1>
(the low-intermediate-frequency situation) the Appleton-Hartree solution

x = KIK/K. occurs at a higher x value than x = _I" This case is

illustrated in Fig. 5d, and for it Eq. (18b) becomes

P

(zh-x)x

i I .%1-IK.Ix

For large k values we require the F< 0 track _hich connects to the

Appleton-Hartree solution as shown in Fig. 5d. Between x= KIK_/_ . and

x = 2K1, we use the F> 0 track andfor x<2FlWe use the F< 0 track.

In all four cases, the large-k portions of the curve make a

smooth transition to the appropriate well known electrostatic cyclotron

harmonic mode (sometimes called a Bernste'_n mode).

The above formulation applies to n = 2 as well except that the

excursion from the Appleton-Hartree solution occurs for larger values of

w-r_ b and it connects up sooner with the es mode.
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For n = I, Sb has a negligible effect. Equation (20c) showsthat

for a large excursion from the Appleton-Hartree solution, F5/2must become

exceedingly small (rather than large as for n> I). Since F cannot go to

zero before going to _ (see Fig. 4a of Part I), the dispersion curve for

complex s is about the sameas for real s(see Fig. Ic) and only exists if Kl> 0.

, Figures 6a and 6b showcorresponding curves for the ordinary

wave whens _ s respectively. Equation (2/a) (valid for n = I also) shows
P

that if _> Up, one needs F< 0 for large x values, x> (I -Wp2/_=), and F> 0

for x< (I -_p2/W2). If S<_p, one can follow the F< 0 track for all k

values. Compare Figs. 6a and 6b with 42.

At this stage, it is informative to look at w versus k plots

including several harmonics on each plot for ratios of Sp2/_b 2 ranging from

one to 12. The ratio of S/Sb is plotted in Fig. 7(for the equatorial

region, daytime and sunspot minimum) versus ionospheric altitudes of

500-30,000 kms using the data in Table I. We note that _p/Sb varies

between one and ten. This ratio is also equal to rb/_, the electron

Larmor radius to Debye length. In the polar regions, Sp/Sb may be smaller

(as low as ½) than for the equatorial regions. In Fig. 8 to 15, the

dispersion curves are shown schematically for the ordinary wave or for

the combined extraordinary-plasma waves. These plots are obtained by

making use of our previous results in Figs. 5 and 6.

Of interest is to note in Figs. 8 to 15 or 5 and 6, the points

where 8s/Sk can match the satellite velocity. Such points exist on

either side of the x = KIK/K . or x = K. dispersion curves provided these

electromagnetic waves can propagate. Another point for matching which

always seems to occur (except for _ = Sb with the
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extraordinary wave) is near k = 0 where the dispersion curve rises above

n_b. In the next section, we turn to this problem of matching s_tellit_

to group veloci_-. In fact, _e associate the long duration cyclotron

harmonic signals v_lth waves travelling at the satellite velocity. Such

points occur both for the extraordinary and ordinary waves.

IV. _TCHINGSATELLITE VELOCITY TO GROUP VELOCITY

(a) Mat chin_g__

All the above dispersion relations are in a stationary frame of

reference. Since the satellite is moving, the actual _ and k values

within the plasma are shifted from that of a stationary transmitter. The

shifted values (_' ,k') can be obtained by a Lorentz transformation with

the result (see for example Silin and R_hadze, 1961, p. 174):

= - v)/ V'/c" (28a)

vk' = k + "_ z V(1 -V1 "V'Z/cZ)-mV2/c2 (28b)
-- V2VI_V2/c 2

where primes refer to a moving frame of reference and where V is the

satellite velocity vector and V its magnitude. For c >> V

v(o v)k' = k - c-T 2 and _' = w - k. V (28c,d)

Hence --k= _-k'+l(_' + E-'V/2)/c z (28e)

Let us first attempt to match satellite velocity to group

velocity in the direction parallel to magnetic field. An examination of

Eq. (Sa) reveals that the most rapid variations of s and k.
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arise from the @+ _k,,2 term (or p'+ _"k,,2 for the ordinar_j w%ve).

Diffelentiating this and setting 8s/Sk. = V,,, one gets to first order

V,,Sp/8_ + 24Bk,,= 0 or

Ftt 5=- 2m _ n+_
(29a)

since p = Fn+ _ and Fn+s/2- 2Fn+_+ Fn+I/2 = F"n+ % for the extraordinary

wave. (A prime denotes a derivative with respect to _8.) Similarly for

the ordinary wave we find from Eq. (16c)

kl t -- _

F'n+_

ETFn+_2-SFn+_ + 3Fn+ _ - 2F_+_2/Fn+3/2_

_Vm Fn+_2 Fn+J/2 (29b)
=- c-_

" Fn+ ++% %-2

Inserting the value of k. (Eq. 29a) into _k,,2 yields

_k,,2 = (V,,2/2vt_)

!

n+

F It 5
n+ _

(30)

which is very small compared to p = Fn+ _ since V,,/vt~ 1/16. This

substantiates our use in Sec. 2 of first order k. 2 terms _nd treating

_k. z as a small correction to p.

In order to provide a more convincing argument valid for a wider

range of k. values, we apply the generalization of p + _k,,m, namely the

_qlr_ b k.c_function, _ , _-_, discussed in Part I. The most rapid variation of

the dispersion relationship with k. occurs in the _q function. We therefore

solve for the value of kI,,such that 8_q/8_. = O. We have in the transformed
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frame of reference using Eq. (7) of Part i

=-i at l-it)2 + ,, ÷ c_m
q\

o

t2c 2 _ - %/2
X

_ expl_ _[(it) 2 _,,+V,,/, _. ,.2 t=c _ __½ #int_b D

Differentiating with respect to _,, and neglecting V.2/c 2 with respect to

one

/ 2 C2v./, _., _,--1(_ k.v_)t

fO.te:_p4[....)E v.t .]
+ _b_ _ ......(_,+_..v)

dtexp {-...) V,,/, (_+ ' 2

--_--]-<-T ,,_,_ + (,,'÷_. v)_

o, (_-_b)
where (_8) = N _....

v t

0 2

O)

Equating the above to zero yields

÷I +
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FromEq. (28e) weobtain the sameresult as Eq. (29a), viz.

-"-
(31)

since _' > kA'V.. Since for many cases of interest, the ratio of _'s is

less than one, - k. is somewhat less than eV,,/c2. [Some care is however

needed in the region where 8_q/8(MS) = _].

(b) Attempt to Match kA for the Electrostatic Wave

The next task is to match satellite and group velocities

perpendicular to the magnetic field direction. Since the k. term is very

small (see Eq. 30) we assume in the following discussion chat k,, = 0.

First we show that for n > 4, it requires unreelistically small

values of V. to obtain a match using the Bernstein electrostatic mode in

the region where k = k. and _ are real.

mode is given by

From Eq. (26c) the Bernstein

2x_2n21 _ 2

_2_ni_b2 = _oA, n -J'l( 1-e _lz #"'--'oz) (32)

2 2).
where k = V_b/Vt , and we assume that w2 > (wb +Wp

Parenthetically, we note the point for which the group velocity

is zero, 8s/Sk = O, namely

 (Tne-X/X) = 0 or "/_I - In+1_ = - I (330)
in j n\

This relation is more appropriate to use than the tangent method pointed

out by Stix (1962, p. 229) involving the maximum value of (Ine-_).
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(The tangent method of Stix turns out to be very insensitive for

obtaining the value of _.) Equation (33a) can be solved by a trial

and error method using tabulated values of the I Bessel function°
n

The results are given in Table 2, vfnere for n = 2 to 5 the value of

given and also the value of (nI#k)e -_ which is required foris

obtaining s - r_b from Eq. _3z). T_ese results are compared with the

following good empirical relations for _ and s - rmb, viz.

_ = 0.342n 2 and

2 2

0_-_ -2-. 1 -
" r_b " "b .z bz

(33b,c)

We are however more interested in matching 8s/Sk to V. than

equating it to zero. Letting 8s/Sk = V., Eq. (32) yields

= -k

v_tl II -szw / 2nI e E__tll I nl.1
V. Wb_2 p _ n

_PJ ,_b z _r_b - _3/2 + n-1
(34a)
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Since V./v t can be as high as 1/16 and Sp=/Sb 2 varies betv,eon I/4 and

100 (see discussion after Table I), we note that the maximum w_ue of

the left-hand-side is 4/16 = 0.25. However we show below (in Table 3)

that the right-hand-side never attains such high values for any n. One

may argue that the satellite seldom moves perpendicular to the

magnetic field. But even assuming V./V _ 1/10, we require the right

hand side to attain a value of 0.025. This is possibly for n _< 4

only and not for larger n, as follows from Table 3.

The above discussion indicates the importance of the maximum

value of 8_/8k. Differentiating again Eq. (34a) and equating the

result to zero yields

= X(4 _ + 5+)2n'In 4_ 2 X( 3 ' _u) 5n+3
In+ I +

Equations (34a,b) are difficult to solve analytically in the region

where X _ n, so that we resort to plotting the right-hand-side of

Eq. (34a) for various n. In Figs. 17a to 17d, we present plots for

n = 2 to 5. We pick out the points of the maximum slope and tabulate

these in Table 3.

Table 3 corroborates our assertion on the difficulty of

matching V± to 8s/Ok for n > 4. The reason for this is that the dispersion

relation for the es mode varies over a very large range of k for a slight

change in _. Tables 2 and 3 also show that for the lower harmonics, a

match also requires a measurable shift of s-r_b, which is not observed

on the Alouette. The Alouette frequency sensitivity is at least one p_t

in 200.
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TABLE 2

The Values for Zero Group Velocity
for the Bernstein Mode

n

3

4

5

_(exact)

I.26

3.05

5.50

I 8.55

I

Eq. (33b)

I I.37

!
I 3.o8
I

5.47

8.55

w b
(_'-_b)_--'_61-

p \

2

°I•,#sb=, (exact)

0.1025

O.O479

0.0278

0.0179

Eq. (33c

0.1125

o.050

O.0281

0.018

TABLE 3

The Exact Values for Maximum Group Velocity
for the Bernstein Mode

n

L

2

3

4

5

0.2

I

2

3

2

\Skjmax\vt _' - wz -PSb_l (

0.1475

o.o55

O.O269

0.0151

see Eq. 34a) (w-r_ b --_
p \

2

o.o41

o.o245

o.o137

o.0o757
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The case of real s and complex k = kr+ iki may seemingly hold

hope of obtaining a match near the turn-around point in Figs. 3 or 4.

However, near these points, kr and ki are of the same order, so that the

wave is attenuated as the exponent of - k.r=l "krr = -krVt=-0.1 wVt/vt,

since we estimate kr to be about 0.1 s/v t near the turn-around point.

This gives much stronger attenuation ths_ observed since taking

V/v t = 1/16, one fin_s a e-folding time of _t_ 160 rather than 104 as

recorded by the Alouette. Another point against the es mode is that one

would sometimes expect a measurable Doppler shift of krV._ 0.1sV./vt=wVj160V

which is not observed. A large kr is also associated with a small region

(a characteristic length of I/kr)of excitation less than the antenna size,

which would require consideration of sheath effects. Our analysis is

inadequate for considering sheath effects. Furthermore, as discussed in

Part _, the detection of a signal after the transmitter is shut requires

consideration of complex s rather than real s. Essentially, we are dealing

with an initial value problem in time. For very slightly complex s, the

above turn-around point or matching point does not occur (see Figs. 5).

In conclusion, we must relinquish attempts which are consistent with

observed effects for a match using the Bernstein mode_at least for n > 4.

(c) Matching kA for the Extraordinar_j Wave

Let us now attempt to obtain a match for lower k values near or

less than the Appleton-Hartree wave numbers. We start with our

fundamental Eq. (18b) for the extraordinary wave:

I

pk2(n-2) F - K1K r - K. x
(35)

I
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2 2
k2c 2 u

where x =-_f- , K I = l----P--- K_ = I- ]_
(r) _±% ' _ b_ '

,t,

Since . is complex, we differentiate with respect to °Jr and equate 8s/Sk_V..

,_1Note however that _i<<<.r (see Part I, Sec.V_) so that we let 8./a. r .

We also neglect throughout the derivative 8wi/8. r since this is of order

coi/_0 r and hence negligible. We denote the F derivative for convenience as

8F 8. 8F 8F F' 8_8 _-i"!F'pn_ b

F'-8-V_IS-_r_8-V_V so that 8-_r = 8w _

The derivative of F with respect to wr is taken along the track of real F.

The parameters which have to be differentiated are k, F, _, Kr, KL and x.

The result is

"'/ F' _ _kV'r_b" 2x(oJ- kVx) E (2KI-X)Kj'x_"* _pk2 (n__2) F2 j)_'-'Tt) - 2_n-2/ = - _, , _k2_-_)F _ _ _÷(_-x_+_-_r:_-i-_ j

kV_22x_2_+w b (2EI-X)2_ s 2(2_2-oJ 2)(2K -x) (2KI-X)X_ 7' _ , p' b 1

K_r-K_L_(_b_:- (K!Kr-K_x_("_-%_÷ (_r-_x_(_-.{7 ÷(K_r-K_x_$_LI

(3_a)

Since . >> kVA, the kV A terms on the right hand side are negligible.

Essentially this means that we neglect the derivatives of K1, Kr, K_ and x

with respect to s. We can substitute Eq. (35) into the last term on the

left hand side of (36a) and combine this with the remaining first term on

the right hand side to yield
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KIK r - KAx

(=1 _)Kx _ (_Kr _,xV F_ kV_ (36b)
= \ 2X /_pk2(n-2)F2

=-/_-x_/F,p kwVA) / x(2K1- K)x 2(n-2)_p_
(36c,d)

where Eq. (36c) or (36d) is obtaining by substituting into (36b) values

for F or F 2 respectively from (35).

There seems to be three regions where one can satisfy the above

equations, namely near

(i) the Appleton-Hartree solution, x = KIK_/_ _

(ii) near x _ _ and

(iii) for x << I.

Let us consider these separately.

Case (i) - When x = KIK_/KA> 0 we find from Eqs. (35) and (36c)

2KIK r
KIKr _ _ k2(n-2)I:_ '

X _ : , i_V A

where K A = (K 1+ Kr)/2. Also from Eq. (36d), we note that

i_i F 'kV A2 : - pk2(n-2)P

which shows that (V.kF'/_)( 0. Hence from Eq. (37a), we can have

>

x < _Kr/_ A depending on whvther F X 0. This is consistent with the

signs of F used in Figs. 5 near the electromagnetic solution. Since

(37a)

(37b)

i
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+ k -- w_x/c, Eq. (3Va) gives a very small deviation of x from KIKr/_A,

of the order of vt2/cV A.

KIKr
X u

Kj.

vt2

F ' cg.
(37c)

Equation (37b) cannot be satisfied for n = I since the right-hand-

side is much larger than the left-hand-side. This is again consistent with

the results in Sec. 3. For n = 2, Eqs. (37a-c) can be satisfied for

values of F of order one. In fact for x < _K/KA, we can use the region

where F > 0 and both s and k are real. As is shown in Eq. (22e) the slope

8_/8k is of order vt2Sc2 at _ = r_b and increases to about c as s tends

towards the Appleton-Hartree solution. At some intermediate point, the

slope must equal VA. Thus a match is readily obtained for n = 2 and

w>nw b on the F> 0 branch in contrast to n > 2 where it occurs on the

F > 0 branch for w ( r_b. In all cases the difference (s -_b)/S is

relativistically small.

Note that these matchirg points are present only when there

exists an Appleton-Hartree solution, i.e. when _K/KA > 0. However,

resonances are observed on the Alouette apparently unaffected by the

extraordinary wave cut off, _= 0. (See Alouette data in Fejer and Calvert

(1964), and in Calvert and Goe (1963)). Apparently, the cyclotron

harmonics exist whether or not the extraordinary wave can propagate. This seems

to indicate the additional importance of other matching points, namely

case (iii) below and the ordinary wave. Also the value of x from Eq. (3Vc)

yields a wavelength nearly equal to the free space wavelength which is also

of the order of the antenna size. The analysis may ...._c to include
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both finite antenna size and possibly sheaths around the satellite.

We do not propose to do this. The above remarks also apply to case

(ii) which we proceed to discuss. Cases (i) and (ii) are of interest

nonetheless for situations with very small antennas in a uniform

medium.

In conclusion, the matching points in cases (i) and (ii)

may be very important. Since two exist for either case differing

relativistically in _ and by about vt2/cV A in x, beating between

these resonances or between resonances of various modes may perhaps

produce the modulation effect actually observed for the second harmonic

resonance in S-48 (see Calvert et al, 1964).

Case (ii) - When x = _ > 0, we can also get, from Eqs. (35) and (36),

>
two matching points depending on whether x ( 2K 1 and F _ 0 respectively.

To see this, we expand around x = 2K1, we find that (F'kV./_) < 0 from

Eq. (36b), and from Eq. (360 ) we obtain

x- 2K I =- l+ KI F s F vt2 (38)
_-_-W _ or Ix- 2KII = 2hf2-_I F' cV±

Besides the remarks discussed under (i), we note another.

Our basic Eq. (35) is not valid very close to xi= 2K 1 since in this region

the F > 0 and F < 0 branches couple (see Sec. 3) and in fact we should

use the more exact relation, Eq. (IVb). (Note that Eq. (19) gives the

correction at x = 2K 1.) A more complete analysis is necessary to see if

the matching points around x = 2K 1 actually exist or not.
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Case (iii) - We now consider the matching point

for x ( < I
. _ This point is a direct consequence of the relativistic

analysis which shows (see Figs. 5a to d) that _ rises rapidly above r_ b as

k A tends to zero. Because of the rapid rise, the slope 8w/ak A becomes

large enough to effect a match with _.. For x << I, Eqs. (35) and (36)

reduce to

,,.2(n-1 )vt 2
kA e_ ""-_

czVA
F pk'2(n-2)_ 8(n-lKr \'__T and = 7.,/ (39a,b)

Since in this region F is large and of exponential form, F' is more or

less of the same order as F so that the order of magnitude of kA is

2(n-1)vt2

kA = _-- c'VA s (39C)

We also note that when K > O, F'=F> 0 and vice versa, which is in
r

agreement with Figs. 5a to d. Again for n = I, we obtain no matching point.

Equation (39c) gives the value of kA. Comparing this with Eq. (29a) for k.

(neglecting the ratio of F-factor) shows that

k A

k. = 2(n-I ) vt2- (59d)

which is a large number greater than 500. This is consistent with the fact

that the group velocity vector can acquire a substantial component

perpendicular to the magnetic field only when k A >> k. * 0. Otherwise it

points nearly directly along the magnetic field direction.
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Equation (39b) can generally be satisfied for values of p8

between 3' and 40. This gives a value for 8 " (w- r_b)/_ < 40 vt2/c2 _ 10-5

which is negligible. Thus the resonance occurs practically at nwb as far

as a_y measurements are concerned.
• l

Equation (39c) indicates that the characteristic length L of

excitation perpendicular to the magnetic field is larger than the antenna

length but smaller than ambient ionospheric inhomogeneity. Taking

= 2w x 10esec "I, V. = 0.3 V = 3x103m/s, vt = 1.6x105m/s and n =.5 we

find ' _""

LA = I/IkAl = 210 meters

This length is between the Alouette antenna length ~ 47 m and the thickness

N 1500 m of ionospheric sheets of ionization (see Muldrew, 1963). As a

result we can proceed with our analysis without considering the minor

effects of finite antenna length, sheaths around the satellite and

inhomogeneities in the ionospheric medium. From Eq. (39d), the character-

istic length parallel to magnetic field with V. = 0.96 V is

L. N I-!-N 1.5 x I06m

Ik.l

This length, although large, is still less than an earth radius = 6.4x 10em.

The second harmonic as observed by Calvert et al (1964) on S-48 occurs over

a latitude range of 6° or I_ radian so that the magnetic field is uniform

for distances of the order of 6.4 x 10Sm. Nonuniformities will produce

some effect on the signal amplitude. This suggests to look for possible
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correlations of variations in signal strength with nonuniformities along

rather than perpendicular to magnetic field lines.

The Doppler shifts associated with k. and k, are negligible.

Using Eq. (39c), the Doppler shift,

Ik_V_/sl _ 2(n-1)vt2/c= (39e)

is relativistically small. That due to k. is even less.

Since w is complex, the exponentially time decaying part

exp (-_it) has to be examined. On the sheet where F is real and very large,

•< 0 so that exp (-ist) does give a decaying part. However sincewe have _

our effects are restricted to the region where 8 << I, we know from Part I,

Eq. (40d),that _i/Sr = r_/_. The exponential term is thus of order

exp (-_rtVt=/n_c=). For the times of interest, Wrt = 104 , the argument

of the exponential term is very small, so that this time decay is

negligible and of no concern. The actual time decay will be shown in

Part 3 to arise from the other time-amplitude factors multiplying this

exponential. On the same basis, we can neglect collisional damping since

even taking v = 10 sec"I for the collision frequency, vt<< I for the times

of interest.

The above matching point is independent of whether or not an

electromagnetic wave can propagate and thus always occurs for n > I,

except for one case mentioned below. When Kr = 0 (see Eq. 39b), we still

get a matching point by including the next order term in Xo From Eqs. (35)

and (36a), we see that for x << I, K = 0 and Kz = (Kl+Kr)/2 = K1/2 , we

have
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pk_2(n-2)y =- I/_ and F' c2 kV_ x (40a,b)
---- + 2(n-2) = K_lF vJ

Ifn 2 k =-2(n-2)vtl F (40c)

so that the kA matching point is not changed much. The value of F required

to satisfy (40a) is somewhat less than for (39b) so that s is very slightly

nearer to n_ b. When K 1 = 0 and n = 2, no matching point seems possible

for x << I. Recall also that no match exists for n = I. We note t_._t

in Alouette data (see Fejer and Calvert, 1964) resonances are observed

for the first harmonic and for the second even when it passes through

= 0. Below we show that with the ordinary wave we can obtain matching

points even for the above two situations.

(d) Matching k_ for the Ordinary Wave
f

A similar analysis can be performed using the ordinary wave

dispersion relation given in Eq. (27a).

_' 2(n-1) 1 _ 2
-2_vth --, K.=I

I x where P' = -b q_b/ 2nn '
p,k 2(n-1)Fn+ _ - K.-x

Equating 8s/SkA = VA and letting s >> k_V. we find

(41)

k.V. F '_V.
(K,,-x)2 F '

n(K.- x) + x = - - 2x _t' p_j.2(n-1 ) -7 =-kz(K.- x)

where F refers here to Fn+ _ with argument _ and F' _ 8_ 8w r

(42a)
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As x _ 0,we obtain a matching point when

vt= F 2(n-I) K fVAc_

v.,,,, : iv-V-)

(Compare with Eqs. 39a,b.)

This time we can include the fundamental (n = I) cyclotron frequency (see

also Figs. 6a,6b] Besides _h_ _+_ _•• ............ 6_, _.e previous favorable

remarks in Sec.i_e apply as well to this matching point. These are the

relatively minor dependence on antenna size and On ionospheric inhomogeneit_

the negligible difference (s-rmb)/W , the negligible imaginary part of _,

the negligible Doppler shift and the independence of whether or not an

electromagnetic wave can propagate. When K,, = 0, Eq. (42a) yields

k =-2(n-1) vt2 _ F and Pk. 2(n-1)F = -I (42d,e)

so that we again obtain a matching point provided n _ I. This time,

experimental data (see Fejer and Valvert 1964) on the Alouette actually

indicates a drop of signal for n = I as K,,_ 0 or _p. _ ....

•, @ -. . . . .

Similarly we can get matching points on both sides of x= K,,:

F _ K.I : _F, cVix - K. = 2K,,5, _kiVxor Ix- F vt: (_f)

In particular for n = I and x < K,,, there is a matching point for real k,

and F7/2 (see Figs. 6a and $e).
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The advantages of these matching points are the negligible

difference (_ - _b)/_, the negligible imaginary part of w, the

negligible Doppler shift, that it may be easier to excite a wavelength

of the order of the free space wavelength and that the n = I case can

be included.

In the next section, we give the nonrelativistic approach, the

results obtained and a comparison with the more proper approach given

above. We point out the inadequacies and errors introduced by not

using relativistic analysis.

V. NONRELATIVISTIC ANALYSIS

If we apply the nonrelativistic formulation we get a completely

different picture. The nonrelativistic formulation is incorrect for

(_-rmb)/_ < vt2/c2 and the analytic continuation in terms of the Z

"plasma dispersion function" is always incorrect for (s-nmb)S ((k.c/_) 2

and in particular for k. = O (see Sec. VI of Part I). Let us nonetheless

use the following nonrelativistic limit of the F function to see what

(For simplicity, we perform the analysis onlyresults are obtained.

when k. = 0).

vt2 _ (43a)

Fq _ c• __n_ b

Strictly, Eq. (43a) is only valid for 1.81> i _d Im s > 0 (see Part I).

If we wish to include -_ values as well in the same formulation, we

use instead of (43a)
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vt(1 i>2v o2Fq_ _ s _'% + _+_b =_2_n2sb2
(43b)

In Eq. (1}%) we again neglect higher order k terms except for

the last product (k4(n-2)_erm. The equation for w2 - n2sbZ becomes

2 An-1 n 2

(s2 nzsb2)2(_Kr - xK.) - (w2 - n2wb2)(2K I- x)2_p n ,
2 n.

_ 4A2nnz

, + 1°

(n.S)22n(n ')'

=0

(_)

where we used the expression for P in Eq. (_d). Solving Eq. (44a) for

w 2 - n2_bZ yields with

2 2 2

= - P and K.=I f_ )K1 1 _(_+%) , Kr=l w(_P,-%) - (_ b_

4up 2naA n-1 k zc2 _ / k 2ca

- _ - T KIKr_ ]n_b2_ K n:2 n
r

2An+l k 2ca
and _2 _ n2_b _(n+1)n:2 n

These two solutions are decoupled provided k202/_ z is not near 2/{1.

We note that Eq. (M_b) is the nonrelativistic equivalent of

Eq. (18b) as is evident upon substituting Eqs. (43b) and (4d). In addition

however we have succeeded in deriving a new wave given by (44c), which is

not present in the more accurate relativistic formulation. Sg_ce for this

2 n2wb2 An+lwave w - ~ , the _- k dispersion curve is very much localized
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around s = nwb and never deviates appreciably from r_b except near coupling

points between it and the other waves. This is the localized third wave

which appears in the calculation of Dnestrovskii and Kostomarov (1962) using

nonrelativistlc analysis. We note however from Eqs. (_J+b,c) that

_2_ n2sb2 < vt2/c2 for

n-2

-_z-k2c_ C(v--_)n---_

k_c 2 _ /vt2hh(since _. -- =_- _-_ LT" ) )

so that the basis of derivation from nonrelativistic analysis is incorrect.

Furthermore we know from Part I that for F to be large we require its

analytic continuation with Im _ < 0, and then its form differs from the large

values derived from (43b) as _ r_b. (In fact,as already pointed out,

Eqs. (43a,b) are valid only for Im_ > 0.) Actually as F becomes large,

increases above n_b (see Fig. 5) rather than approaches n_b.

Before we leave the nonrelativistic analysis, we point out the

features of the dispersion curves based on this analysis and actually draw

schematic curves for various situations. These curves will be compared

with those including relativistic effects.

As k _ 0, the nonrelativistic dispersion equations (l_+b,c) yield

_2 - n2w 2
b =

_p2n2_n-I/_ _ 2_]p aa 2

n'2n /E - s (w-wb)] and -naw b

2_n+I s 2

o,
(n+1)n'2 n

(l+Sa,b)
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Whenk2c2/wz >> I, the equations yield the Bernstein longitud_al wave

2_ 2n2An-1 s 2

w2-n2sb' = P /El - P )]n,.2n (s2 - Sb_
($6a)

2@ zs2kn+4

plus the additional wave - s2+ n2sb2 = 'P
(n+1)n_2nk2e 2

( 6b)

We next locate the points of zero group velocity. Obviously

Eqs. (46a,b) predict such points at k = 0 or k = 0 and @ = r_b. Other

points exist near the electromagnetic solutions. Differentiating Eq. (_J+b)

and equating 8s/Sk = 0 yields for xo = ko2c2/s 2

x°z _l+Kr 2Kr + K1 +KI+K r -

where K. = (Kl+Kr)/2 and _ _ r_b. Let @R' SL and @T be s values for

which Kr = 0, _ = 0 and K. = 0 respectively. Also let Xl = KIK/K . and

x2 = _I" Then there are four cases:

(i) KI > 0, Kr > 0 and KI > Kr (nmb>s R>sT>sL) . There may be two

zero group velocity points between xl and x2 (x2 > _I here) provided
@ _(n-8) @ '

(n2-8n + 8) > P ..-2T
@b_(n_1 ) and _b < n(n-1). This occurs infrequently.

(ii) _<0, Kr<0 and >IKll.
group velocity points.

There are no zero

(iii) KI > O, Kr< 0 with', KI >IKrl. > > ST> %)" There is one zero

group velocity point for x< x_.
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zero group velocity points, one for x< x2 and one for x> x, with

x, > x2 here.

Differentiating Eq. (_J+c) and equating 8s/Sk = 0 gives one zero group

velocity point for x> x2 and w> w L. The values of s for all these zero

group velocity points are relativistically close to r_b, so that the above

results are questionable. Furthermore the k = 0, w = r_ b point does not

exist relativistically, since for large F, the w curve rises above r_b and

one never actually gets a k = 0 value.

Near x = _i or x2 = I, the n-1 and n+ I waves

(viz _2 _ n2_b2 _ _n-1 _n+1), couple. Also the n-1 wave comples to the em

wave near xl = I. For the four cases discussed above, the dispersion curves

including the wave couplin_aredra_n schem_tico_ly \n Figs. 18a to 18d up to

values of x slightly beyond xl and x2. The solid curves represent the

n-1 or n+1 waves and the checked parts refer _to coupling regions. Circles

indicate the possible zero group velocity points. In order to match group

velocity to satellite velocity we require d_/dk = V_ where VA is the

satellite velocity. Usually d_/dk is much less than VA. A match can only

be found on either side of x, and only when an electromagnetic solution

exists, as in cases (a) and (d). These points are indicated by x. Thus

in the nonrelativistic approach, satellite motion eliminates any "pinch"

(or matching) points near k = 0. Near the "light line", a match can be

accomplished only if anem wave exists at frequency n_b. Relativistic analysis

however indicates that m_tch can also be accomplished near k = 0 (See Sec.l_c,

d.) The above illustrates the major diffe_ences in Figs.18 as compare_ to

the relativistic equivalents in Figs.5.
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The nonrelativistic approach agrees with the relativistic analysis

for Eq. (46a) in the region (w-r_b)/_> vt2/c2. (Compare Eqs. (46a) oald

(24).) The form of this Bernstein es mode and matching points to satellite

velocity have been discussed in Sec. 4b and the analysis given there is

essentially nonrelativistic. As it should, the nonrelativistic theory

also provides the correct variation of the Appleton-Hartree waves outside

of the I_81 < I region, which is according to (44a)

2 2m 2An-lna

KiKr Px K_ - (_2 - n2_b2) 2nn,

(Compare this with Eq. (18b) with (43b) inserted in it.)

We can similarly investigate the nonrelativistic version of the

ordinary wave dispersion when _ << I. Substituting Eq.(43b) into (27a)

gives

2_ 2 An _ 2

K. - x w2 P z - 0 where K. = I---_-
- _nzsb n!2 n

or
2_ 2 _tn

w 2 _ n2_b2 =
n,2 n (K, - x)

For K, > 0 or _>Wp, a plot of s versus k is given in Figs. 18e. One

point of zero group velocity occurs at s = k = 0 and another at

x = nK./(n- I)

and 8_/8k can be equated to VA on either side of x = K,,. The case of
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K. < 0 is indicated in Fig. 18f. A monotonic decreasing variation in _ with

respect to k results for A<<I with 8s/ak = 0 only at s = k = O. There is

no possibility of matching satellite to group velocity in this case when

k<< 1.

In Figs. 19 to 27, schematic dispersion curves are drawn for

propagation at 90° and various S/Sb ratios, showing severa_ _'mo_ic

cyclotron frequencies together. These curves show the behaviour for

large % values as well and include the three cases actually computed by

Dnestrovskii et al (1961, 1962) both for the ordinary and extraordinary

waves. The relativistic versions have been given in Figs. 8 to 16. Many

features of these curves differ. These differences and their interpretation

have been discussed above. In a nutshell, this report shows that

nonrelativistic dispersion theory in the vicinity of cyclotron resonances

is incorrect for very small k.. We have also pointed out the significance

of dispersion effects near k _ 0, where the curves rapidly ris_ above

= r_b, as well as dispersion effects in regions where electromagnetic

modes can propagate.
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CAPTIONS FOR FIGURES

Fig. I. The dispersion curve for the extraordinary electromagnetic _.,rs.ve

near cyclotron harmonics, r_b, for real s and n> 2 (Fig. la),

n = 2 (Fig. Ib) and n = I (Fig. 10). The dashed part of the

curve is the region where k is complex.

Fig. 2. A polar plot of the complex function F (Fig. 2a), F°I (Fig. 2b),

F-(n-1)1(Fig. 2c) which are required when s2 > ST2 and of
.-I

-F (Fig. 2d), -F-' (Fig. 2e) and (-F) -(n-l) (Fig. 2f) required

ST2 Sb2 2 Subscripts r and i refer to real andwhen s 2 < M + Sp .

imaginary parts. The numbers 0, _ are values of _8, the

argument of F, marked off on the polar plot.

Fig. 3. The dispersion curves for the plasma wave for real s, complex k,

near the cyclotron harmonics when s2> _T 2 (Fig. 3a) and

s2< ST2 (Fig. 3b). The dashed parts indicate regions where k

is very complex.

Fig. 4. Schematic dispersion curves for the extraordinary and plasma waves

for real _ and complex k. (Dashed parts indicate very complex k

value s. )

(4a) n_b > sl_> sT > _L

(4b) sR > sT > _L > rmb

or K1 > O, Kr > O, KA > O.

or K1 < O, Kr < O, Kz < O.

(4c) wR > nm b > ST > SL or K 1 > O, Kr < O, K. > O.

% > > sL or > O, < 0, K. < 0.

I

Sb /Wb2 _ 2 or X = i + Y

where m(_) = _ --_" +V--_ + P or K(rl) = 0

2 + or X = I -y2 = 0Sb2_T = Sp
or K x
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(4e_ Dispersion curve for the ordinary wave when s is real,

> Wp and k complex. No solution is possible when s < w .P

When n = I, the wiggle is substantial but for n > I it is
m

negligible. Here K. = I -_ .

Fig. 5. Dispersion curves for the coupled extraordinary and plasma waves,

for complex s and real wave numbers near or less than the

electromagnetic values. The 4 cases correspond to those in

Figs. 4a-d. The dashed parts indicate the coupling regions

between F > 0 and F < 0 branches.

Fig. 6. Dispersion curve for the ordinary wave when _ is complex and

k is real. Also s > w (Fig. 6a) or _ < s (Fig. 6b).
P P

Fig. 7. Ratio of plasma to cyclotron frequency (or Larmor radius to

Debye length) versus altitude with an assumed model of electron

density and magnetic field at the equator for daytime and sunspot

minimum.

Fig. 8. Schematic complex _ - real k dispersion curves including several

Fig. 9.

harmonics for the coupled extraordinary and plasma waves when

2 2

2wb > Wp .

Complex _ - real k dispersion curves for the ordinary wave when

Sb >o_ .P

Fig. 10. Complex s - real k dispersion curves for the coupled waves when

3_b 2 2 > 2_b2> "p
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Fig. 11. Complex _ - real k dispersion curves for the ordinary _:_ave when

2rob > Sp > Sb"

Fig. 12. Complex w - real k dispersion curves for the coupled waves when

6_b 2 > 3_b 2 "2 >_p

Fig. 13. Complex w - real k dispersion curves for the ordinary wave when

_b>S >p 2mb"

Fig. 14. Complex w - real k dispersion curves for the coupled waves when

8_b 2>6_22 >Sp b "

Fig. 15. Complex w - real k dispersion curves for the coupled waves when

2_ b 2 > 8_b2I 2 >Sp

Fig. 16. Complex s - real k dispersion curves for the ordinary wave when

_b > _p > 3_b"

k2vt2 2Fig. 17. Plot of the normalized group velocity versus h = /w b

for the Bernstein electrostatic mode for n = 2 (Figs. 17a),

n = 3 (Fig. 17b), n = 4 (Fig. 17c) and n = 5 (Fig. 1]d).

Fig. 18a- d. Nonrelativistic version of the dispersion curves for the

coupled extraordinary and plasma waves. The four cases

(Figs. 18a to 18d) correspond to a to din Figs. 4 or 5. The

checked portions on the curves indicate coupling regions between

the waves, circles indicate zero group velocity points and

crosses indicate points where the group velocity can be matched

to satellite velocity. The waves varying as w t_b _n-1-- _ or

An-1 are designated respectively n-1 and n+1. The values x,,2 are

x_ = _K/KA and x2 = 2K 1.

18e,f. Nonrelativistic version of _he dispersion curves for the

(Fig. 18e) and s < w (Fig. 18f).
ordinary wave when w > Sp P
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Fig. 19. Nonrelativistic version of the schematic dispersion curves

including several harmonics for the coupled extraordinary and

2OJb2> 2plasma-waves when _p

Fig. 20. Nonrelativistic dispersion curves for the ordinary wave when

_b >w •P

Fig. 21. Nonrelativistic dispersion curves for the coupled waves when

3_b 2 > .2¢b22>_p

Fig. 22. Nonrelativistic dispersion curves for the ordinary wave when

2Wb > Cp > Sb"

Fig. 23. Nonrelativistic dispersion curves for the coupled waves when

6wb 2 > 3_b2"Z>Sp

Fig. 24. Nonrelativistic dispersion curves for the ordinary wave when

3_b > _p > 2mb •

Fig. 25. Nonrelativistic dispersion curves for the coupled waves when

b 2 2 > 6_bZ8_ > Sp

Fig. 26. Nonrelati-_lstic dispersion curves for the coupled waves when

2mb 2 > 8SbZI 2 >Sp

Fig. 27. Nonrelativistic dispersion curves for the ordinary wave in

_b > Sp > 3_b"
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- ABSTRACT -

The calculation is discussed of the time behaviour

associated with the frequency singularities resulting from

pinches in wave number integration. The pinches occur when

an integration contour in wave number space is pinched between

poles.

This technique is then applied, for the Alouette

situation, to the singular case for very small wave number

when the satellite and group velocity are equal. ....

The relevant Alouette signal is found to be indistinguish-

able from galactic noise in a time of order 20 _sec, well before

the Alouette receiver it turned on. The cyclotron resonance must

be found elsewhere, probably in the coupling resonances or in

the Bernstein modes.
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I. INTRODUCTION

In this section we discuss the calculation of the asymptotic

time behaviour of the cyclotron harmonic signal. As indicated in the

Basic Theory section in the General Introduction, the singular time

behaviour will be obtained by considering the behaviour of so-called

complex plane "pinches". By a complex pinch we mean the pinching of an

integration contour between two converging singularities which coalesce

at some critical value. The pinch analysis will give the Laplace

transform which proves to have a singularity other than a simple pole:

e.g. a branch point or a logarithmic singularity. We must then invert

the Laplace transform to obtain the time behaviour.

We first consider the general method of pinch points, following

the treatment given by Briggs (1964), and then the detailed calculation

for the pinch in the ordinary and extraordinary cyclotron harmonic

waves which occurs for small k (k << Appleton-Hartree value for _).

II. SINGULAR TI_ BEHAVIOUR FROM PINC_S IN THE COMPLEX k-PLANE

The solution to many perturbation problems for a uniform

medium is very often obtained by using Fourier transforms (k_ in space

and Laplace transforms (w) in time_ i.e. a plane wave transform.

The characteristic dispersion of the medium usually emerges

in the form of an expression, say D(k_,_), in the denominator of the

transform whose zeroes give poles in the complex k or w plane (which

ever one is first inverted).

Depending on the method of excitation the result is a set

of waves (normal modes) with frequency _(k) or wave number _(w)

determined both from the excitation and from setting D(_,s) equal to zero.
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The group velocity (the velocity of a wave packet with some spread in

or k) is usually given by 8_/8_. This is the standard result.

Further information requires more advanced technique. For

instance, although only simple theory is needed to discover the

dispersion and group velocity relations, it requires ingenuity to

discover how the wave packet will decay, _s it will in a dispersive

medium.

It is evident that_ to an observer moving at some arbitrary

uniform velocity_ the amplitude of the wave packet travelling at that

group velocity will seem to change very slowly and only because the

packet itself is spreading due to dispersion.

This is held to be the situation for the Alouette resonances,

so the calculation of the decay with time of the wave packets which

travel with the Alouette is the heart of the problem. The preceding

two parts have been devoted to obtaining the appropriate dispersion

equations etc. Now we must use these quantities to give the time

behaviour. The first step is to transform the system into a wave packet

frame of reference in which the wave packet stands still, so that in

the new system 8_/8k is zero.

This proves to be essentially similar to the general problem

of absolute instabilities in uniform systems (Briggs (1964)). The

mathematics was applied originally to quantum mechanic s and was applied

to the Alouette collective resonances by Nuttall (1965). Dougherty

and Manoghan (1964) also use this technique, but only investigate the

location of singularities.
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The characteristic feature is the coalescing of tyro (or more)

k-solutions to the dispersion equation at some value ko for a frequency
w-

so, to give a double (or higher) root with 8D/k = 0 (or all 8n-1_Sk n-1 =0

for n-fold degeneracy). If the k_ solutions at some frequency _o

come together from opposite sides of the line integrals in the complex

k-planes used to invert the Fourier space transforms, the integration

contour is described as being pinched between the k-poles of the

characteristic function. The Laplace transform then proves to have a

singularity at Wo giving singular time behaviour. A simple example

should make this clear.

Example

This simple one-dimensional example is the one given by Briggs

(19(9+) (also Bers and Briggs (1963)) • With 8D/Sk = O, from expansion

around wo, ko,we have for a first order approximation to D.)

82D

Note

I

D=O gives k,,2 = ko +- (w-_o) _ 8-_J
(2)

8D 8s 8D 0 so if 8D 8_ 0
Also 8-_ = 0 and D=0 mean 8k 8_- _#0_ 8-_ =

For the Laplace transform inversion (done last) which gives the time

behaviour, the inversion line integral in the complex _-plane is on

the same side of all singularities of the transform (in our case above

since we use _dt exp (i_t)... for our transform).
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In the vicinity of We, as s runs along a line parallel to

the real axis and slightly above Wo, the two poles in the k-plane

will move as shov_q in Fig. I for real positive (SD/8_)(½82D/SkZ) -I .

(For a real negative coefficient the same tracks are traversed in the

opposite direction. )

o%

(a-_ D i_jr_n

aR =0

I_o t_--_-

_-ptane

A
-- I1.

y

C_t

(c) --

I I

_o I/A

I "pol_ _n_iector ies

Fig. 1. Anatomy of a pinch. Shown in (a) s vs k, (b) _, (c) k planes.

The Fourier transform line integrals go between these poles

for cases of interest. Far from _o one or the other residlle (depending

on which half plane Reik x< 0)_say kl, gives a result for the Laplace

transform L(s ,x)
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(3)

In general this will be a function of [s-_, !k1_ form and

will give a simple result. Near _o the appropriate value of D is

(k-ko)Z82D/Sk z and with the k-ko value from D = 0, we have

X)

2a_ a2D__ , _½_1 Wo_

(4)

There is a branch pole of L(s,x) at Wo. Notice that if 8D/Sw _ 0 as

is true for cases of interest then 82D/Sk 2 is equal to

8 ¢8_ 8_'Z/,_= (8D/8_)(81_/8k2) since 8_0 = 0 and we have
ak ako,\ u./

L(_,x) = g(ko)exp(ikox) I
1 1

\a< _oko

(5)

The quantity (82_/8k 2) is essentially the curvature of the s vs k

locus for D = 0 and so the flatter the curve the larger the signal.

By a standard formula or by appealing to the integral definition

of the gamma function r(u) (v > 0) for (_ - wo) -u it is easily seen that

F(t,x)=-_ e_ (- i(_o_- ko_)) (6)
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1

[In three dimensions the singular w result would have been (w-so)_ and

the asymptotic time behaviour would have a t-_/2 decay. This one-and

three-dimensional time decay is the same as for the behaviour at the

origin of the diffusion solution to an initial 8-function and

indicates the connection between wave packet decay and diffusion.]

Discussion

This example has the essential features of the analysis:

the location and understanding of the behaviour of the k-plane poles

and recognition of the pinch situation, the calculation of the Laplace

transform by the space Fourier transform inversion to find the spatial

variation and, finally, the inversion of the Laplace transform to

obtain the time behaviour. The result is valid for many simple cases

of interest. The extra point which could have been (but was not)

explicitly included was the transformation of the dispersion equation

to the moving frame in which 8_/8k was zero.

In the Alouette case the moving frame is the Alouette and

the velocity that of the satellite itself. The Green's function and

dispersion equation formulation is far more complicated than in the

example but in essence all we try to do is to locate parts of the

plasma dispersion characteristic where the group velocity equals the

Alouette velocity, and then find the resultant time behaviour at the

Alouette.

In complex situations there are many other considerations

and the reader had best refer to the literature cited at the end of

Part 3. The object here was simply to convey the basic idea of the

pinch method.
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NOTE

[Note added on the pinch calculation (III, IV, V)].

The motive for concentrating the pinch region discussed in

the ensuing sections was the fact that the Fejer-Calvert data (Fig. 4

(Part 4)) in general showed no marked cut-off at SR or Up.

A pronounced minimum in duration was observed very nears
P

for the 3_b resonance, but a data point beyond this indicated that

the resonance had, so to speak, recovered. The 2sb result showed a

slight but definite decrease for Up above 2Wb, but the complexity and

multiplicity of the _b dispersion means that it is difficult to make

an unambiguous interpretation of this result.

On the basis, then, of the _b "recovery point" it seemed that

coupling between cyclotron harmonic waves and Appleton-Hartree waves

was not the answer. Hence we concentrated on the small k. or near-

cut-off pinch.

The calculation of field strength (V) performed after the

mathematical analysis gave results in reasonable agreement with theory,

so the other pinches were not examined closely.

The minimum detectable field criterion (E min) was taken from

Sturrock's (1965, Sec. VIII) analysis with only a numerical check on the

numbers given. In the final stages of proof-reading the report_

however_ it was discovered that Sturrock had misinterpreted a loosely-

stated receiver specification given by Thomas and Sader (1963, p 3).

The receiver minimum signal detection_including antenna_mismatch was

I
given as"t9 db" (20 db actually quoted by the Alouette workers) above KTB".
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Sturrock used the plasma temperature (N I0 _°K) for T. In fact the

number should be nearer the galactic noise temperature which is N I07° K

(Hartz, 1964). The error in power is 104 a_d in field 102 .

The agreement previously obtained was spurious, the small k.

resonance should be masked by galactic noise in about 10.2 of the

previous time or aboul 20 Nsec. The receiver, turned on 100 _sec after

the transmitter is off_will never see this signal.

Hence it is evident that the small k z pinch discussed at length

here cannot be responsible for the Alouette cyclotron harmonic resonances.

It is absolutel_ necessar_ that the Appleton-Hartree coupling

and the Bernstein mode effects be investigated further using the

techniques already developed_but applied to the weak small-k A resonance.

The small-k, analysis is nonetheless presented to show how the

field strength value w_s reached, and how the general method is applied.
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III. PINCHES AND CYCLOTRON HARMONIC TIME BEHAVIOUR

Now the pinch method will be applied to the problem of the

Alouette type using the dispersion equations of Part 2.

Recapitulating briefly, the pinch in the satellite frame of

reference must occur close to the cyclotron harmonic and come from

matching the wave group velocity to the satellite velocity. The

resonances occur even below SR and Wp and so cannot be then due to

coupling between cyclotron modes and Appleton-Hartree waves. Nor can

they be due to waves with large klsince velocity matching is not

possibly at high harmonics and the Doppler shift would be quite

noticeable. The pinches of interest are therefore those for small kA

(but kA >> k.) for both the ordinary (Eli B) and extraordinary (EIB)

dispersion equations discussed in l:art 2. These are a feature of the

relativis tic the ory.

Since the analysis for both waves is essentially the same we

give the extraordinary wave first and merely indicate the differences

for the ordinary wave.

IV. EXTRAORDIN_Y WAVE DISPERSION E_UATION

From the plasma dispersion equations (Part 2, Eq. 14b) we have

the following approximate dispersion equation for small k, providing

kA2c2/w 2 proves to be much le_s then Kr = I -Sp2(_(_-Sb))-1 i.e. for

frequencies other than _R:

2

D = I - P

r w(w - Sb )

_ 2/v_2(n-1) n2 c2 r c4 / -_

- 2k'2(n-'l)+(;b_ 2nn , vV_Fn+a/_'2 2vt-'_(k"+ c 7_n+'a-n+}"a n+y_}

(8)
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In nonrelativistic plasma theory (valid for (s - n_b)s-' c2/v_2>> I) the
t

curly bracket term is

vt2 s _ Ik _c__l vt2 _

In contrast to preceding sections We will be working in the

satellite frame of reference so it is convenient to take the frequency

and k as measured by the satellite and to call this _ and the rest frame

frequency be w' and k: we have w' = s (plasma) = s+k.V_ k.'= k.

k.' = k.(plasma) = k,,+_c--_. The argument of the F functions is really

_(I- (r_b/W')) or _(1-n_ b(_+k_.V) -I), however k, proves to be very much

smaller than k. and its effects are explicitly contained in the

(k,,+ _V1/c 2) term. The azimuthal k dependence frame k.V can only be

expected to add a numerical factor which we ignore and take the argument

of F functions as

For small k the_-' function can be factored for a nearly circular_T

polarized wave, leaving only the Dr term in the denominator.

Excitation

For simplicity in this complicated problem we take the exciting

antenna to be an infinitesimal current dipole with a predetermined

current, unaffected by the plasma response (i.e. an infinite impedance

source. The spatial Fourier transform of the current ILS(_) is _L with



-9-

I the same in k-space as ordinary space (IL has the dimensions of

current× leith not current × density) and is the current dipole

moment. Beyond multiplication by the appropriate direction cosines in

_k J further source influence on the result is nil. This, of course,

is why the infi_itssimal dipole was chosen. It would be desirable in

future work to use a more realistic source to gauge antenna size effects.

Fourier Inversion - k,,

The first step is to invert the spatial Fourier transform which

depends on R(k,_) alone because of the infinitesimal dipole assumption.

We need not consider the time behaviour yet, so we will be able to put

in an arbitrary excitation function transform P(s) later. For the low

value of k of interost we can write for the relevant behaviour upon

integration over azimuthal angle:

@@

d'k Dr(k, Dr(k, ) (10)

We have gone into cylindrical coordinates (k.,_,k,) in k-space

and as discussed above, ignored any complicated angle variation. The

exp(i k.r) has also been dropped because k is so small, but it should

be borne in mind when behaviour or conver_oL_ce away from singular

regions is considered.

We change the k,' variable back to k,' = k,,+wV1,/c 2 in order

to eliminate k,, terms and get an obvious pinch in k,,'at zero. (This

introduces a factor exp[-i_(V1,r,,/c2)] which is negligible and is

ignored.) With this new variable D r can be rewritten as
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Dr= - o}(co_OPb)-21<.2(n-1) -_t (,,_ +k',,' _ 2 ._j

- (A- k,,,'B) (11)

where the F functions are understood to be of order q = n + _ and

Fq+ I is of order n + I + _. Also F"q+1 = Fq+ 1-2Fq + Fq_1 since

FI= F -F The integral over dk,, can now be done readily as follov;s:
q q q-l"

A-k'"=B =g _ -k'.
+ 1 q (12)

_-/_+ k I.]

By deforming the contour on the side where Imk_ < 0 and remembering

that we really have exp(-i k_), the result is evidently

dk' 1"= - 2=i ,--'_
A' k',, B

(13)

Fourier Inversion - k.

It now remains to integrate over k. i.e.

_'r-_rl / dJk ei k.r =_ _i ; k'dkz

O

(1_-)
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Now B has a factor kA 2(n-I__ which is conveniently factored out

leaving:

.3 1 1

M - V'B k.-(n-1) = vt_._(jo__.C _ /v.)n-l_. a._.b n- _(_,nn, q+11 _

Our kA integral now becomes

I / dSkeik'_1-_ Dr

@O

i / dk.
- h_M kAn-2A½

0

The pinch occurs when two solutions of A = 0 coalesce and

pinch the integration line. As discussed earlier the pinch condition

is then the simultaneous solution of A = 0 and 8A/Sk A = O. Recall that

A is given explicitly by the following_which defines a convenient

quantity H:

_z C____vt._2(n-1 ) n2
A = Kr - 2kA 2(n-I) F _ vt _bJ 2nn--_.

(17a)

A i Kr - H (17b)

Note that we can write M in terms of H as

M

I

_vt (F,,q+I)½ H bW
2F k2(n_l) ) = _vt k. (n:1) H½ . 1

(18)



-12-

Hence setting A equal to zero gives

2
W

Kr = _ - _ = H (_9)

For w,kA values satisfying the dispersion equation H can be

replaced in the relation for M by K .
r

The condition that 8A/Sk A be zero for the pinch is as follows

nwb
= _' - k_V.)(remembering 8' 1 - _T- , = w

8A (2(n-I)

ak. - H \ kA F' c = 88'_ (2(n-1)* T v7 ak.#: -" k.
F' c2 V'nmb

FvJ (_÷k_VD')

f2(n-1) + F' c2 V _

_-H_, k. -#-v-_

with H _ 0 (i.e. Kr _ 0 in simultaneous solution with H = Kr)

vta _ r_b

- kA = 2(n-I) _T
(2o)

The minus sign reminds us that the phase and wave group velocities

were opposite in the plasma frame, i.e. the wave was a backward wave.

The simultaneous solution of these equations is _o,ko, say. Except in

the argument of the F functions wo can be taken to be rmb where

convenient while

vt2 n_b F

ko = - 2(n-I) _ V--I-_-T
(21)
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For a typical Alouette combination of parameters

p = 106, V_/v t = 10.2 we have ko of order I0-' of r_b/C_the free sp_ce

wavelength.

The next step is the expansion of A in the neighbourhood of

wo and ko as described previously (Eq. (1)) i.e.

(k. - ko )2aA

• + 2 8-'_" I-_.t.- I
Wo_ko

The kA derivative is as follows:

F'pVA_ E-8=A aH 2(n-I) _ 7 - Hk. + ÷ (;))-I

(We revert to using p = c=/vt= for brevity.)

The first term is zero and F'/F can be expressed in terms of k. from the

8H/Sk. = 0 condition, Eq. (20), so we have with H(wo,ko) = K
r

8-"_"i'iikoS"A' = + 2,Kr((n_ 1) _ - \-'_")2FJ
IWo

The w derivative is simple; neglecting the 8K/Sw term we obtain

8A i =- H_ _-- = + H 2(n-I) K 2(n-1)
wo,ko We koV. = + r koV A



Thus we have

A(_,k) _ KrI+2(w-_°)(n-1)+koV_ (k_-k°)z_(n-lk)o(2n-1) - _-_-/_Jl

(22)

The argument of F and of F' is #5', with _' = so+koV., so the only k.

variation left is that explicitly in (kA- ko )2.

Again choosing a few convenient abbreviations

k. - ko M koS; + 2(n-1) ('-"_) : f
koV_

(23a,b)

..1._7/__oVAh,F" _( FF"_g " (n-1)(2n-S) - _ _ = (n-1 2n-S)-2(n-1)_VT_

The singular part of the intbgral is using Eqs.(16), (22) a_d (23)

(23c)

co

e --- = _-_ kon_IK ½ rr (f+ 6s'__
r -I

(2_)

Now only the singular part of the integral is of interest around t = 0

and so the singular part of the integral is as follows, with the value of

M(se,ko) expressed using Eq. (18) in terms of H(so,ko) i.e. of Kr(rmb) ,

1 { d_k eik.r

j - _ C'Kr "q+1 (fg-' .,._'1{
--5

(25)
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I I

The integral is elementary and is 2 sinh" [8 gWf-W] _r 2 cosh-'[ ] for

gf-1 greater or less than zero. In fact the case of interest is whe_

f is small, i.e. in the vicinity of _o, so we can use the logarithmic

approximation for sinh" or cosh" of large argument viz:

sinh "1(x) _ in x _ cosh "1 x :_ (ll  x I >>1)

Thus we have for the singular part of the Fourier inversion

Where we have kept only the interesting terms in the logarithm.

This is very close to Nuttall's (1965) Eq. 21. We ncw need

to investigate the inversion of the Laplace transform to obtain the

asymptotic time behaviour.

Laplace Inversion

We cannot expand the logarithm about its singularity directly.

There is a method, more or less equivalent to integration by parts, due

to Nuttall (1964) which will give the result, but a simpler way is to

note the following inverse Laplace transform formula

_C+oo

1 I "_c_-iwt ____Ei(-i_ot)_ _ = - e In (27)

where E. is the exponential integral and c > 0 is the usual constant in
l

Laplace inversion.



For wet>> I

-iwo t

Ei(-i_ot ) _ i_ e (28)i_o t

The non-singular i_ factor can be dropped. Multiplication by w-terms

analytic at wo merely means replacing _ by we in those terms since we are

interested only in _o effects. All this can also be explicitly shown

by using Nuttall's (1965) method using the full equation for the pulse

form.

If the time behaviour of the current source is given by some

function whose L_place transform P(w) with dimensions is not singular at

so, then one simply has P(so )•

Time Behaviour

With all this_then_we have the result that the cyclotron

harmonic resonance(electric field at right angles to the magnetic field)

at late times at the moving satellite due to an initial infinitesimal

current dipole at right angles to the magnetic field with perpendicular

dipole moment IL. is

_C+_

_ IL. 1 _i_p(w)e-i_t___ d'ke_-_Er(t) Co _ / /' w'_ j
iC-oo

ic+co

IL. r_bvtkO'_gF_ 1½ i i! -lOt w p(w)ln/i-_9/_h dm- _o c_ .1 _ e _ \ wo /
--GO

ILA r_ b vtkoZ /, 22 _½ e-ir_b t
_._o c"r- ' _- "= Kr L gF q+IJ P(rmb) rmbt

(29)
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Putting in the value of ko 2 from Eq. (21)

ILA =_2 2F _½(_TI vtS(n_b )3 -in_btEr(t ) _-_j (2(n-I)) F_+I ..c6VA_Kr p(n_b) enwbt

This is the same time behaviour as obtained by Nuttall (1965) for the

perpendicular plasma resonance, as one might expect since the same

logarithmic singularity was obtained.

Alouette

(3o)

For the finite length (r) pulse train at frequency O of the

ei(n b- )r_1  ei(n b-O)r_l 
(31)

The results are validforI(t-T)(n%-n)l >> I.

We do not have values for Fq, F'q, F" or F" but we canq q+1

say that the ratio of F to its derivatives is not too extreme because

of the exponential behaviour for large arguments (see Part I, Eqs. 38e,

A_Oe). 0n the other hand F" is roughly p[F'-(r_b/W')]/q greater thanq+1

Fq but the exact dependence must wait for an actual calculation. It must

also be borne in mind tha_the term in g may be small if the two factors

in it are nearly equal. This variation with n may be most important.

Failing detailed calculation it is premature to make any statement about

the trends in signal strength for different harmonics. So much for the

extrordinary wave time behaviour.
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V. ORDINARY WAVE

The ordinary wave behaviour is the same in all the essentials.

The chief differences are as follows (see Part 2, Eq. (16)).

(a) Now K. replaced Kr and the wave is polarized along B.

(b) The explicit power of (k.V/Wb) is 2n rather than 2(n-I) and

the numerical coefficient is (n'2n) °I instead of 2n2(n'2 n) • Thus

n factors which come from the power of kA are to be converted to

n+1.

(c) Now Fn+ _ is replaced by Fn+5/2.

(d) Finally, Fq+1" = F"n+_= Fn+ _- Fn+_+ Fn+i/2 is replaced by

F+I m (-2F_+_ 1_n+_+ 7Fn+_- 8Fn+_+ 3Fn_i/2)

The actual dispersion equation (compare Eqs. 8 and 11) is

as follows:

D. = K, - kA2n c2 w 2 /vt_2n
v--_ w--_-_b _ n,2 n

(32)
2

XEFn+ _ 2v__k"+wc--_)_2F_÷_/z FnI+J/2+TFn+s/2-8Fn+_+3Fn+I/2)_

2

K. = I ---_-

The same steps as used for the extraordinary solution will give

I / d_k e-ik.r = i n_bvt k°2 2F_I_ \
(33)
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Here
ko = - 2n c'_ F' VA ' g i n 2n+1)-

r

(34 ,b)

with F = Fn+ _ and we very nearly r_b,

Putting in the value of ko gives

I [ d'k
=-

t 2

" _';'+tJ,,\F I in_ 1

(35)

The result for E is then

IL. , _ • F_.., s _ e

E.(t)_,_ ° 4n ' c°VAZK" " P(r_b) _bt •
(36)

This result looks virtually the same as for Er(t ) and is

distinguishable by the appearance of K,, instead of K r and in the F and

g functions. Since , as mentioned above in connection withEr(t),

explicit knowledge of the F values is required for a detailed analysis

we cannot make quantitative statements about the comparative strength

of the signal, either from harmonic to harmonic or between E r and E,,.

Comparison Between PerpendLeular and Parallel Resonance

There are two points of distinction between the perpendicular

and parallel resonances:

(a) Orientation: The antenna (at least for the infinitesimal dipol_ is

oriented in the same direction as the electric field i.e. parallel to

B for the parallel resonances and perpendicular to B for the
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perpendicular resonance.

(b) Cut-off Frequency Effect: Although the dispersion equation

approximations are invalid when Kr or K. goes to zero at _R or Sp,

nonetheless it is evident that some change will take place there.

Evidently the parallel small-k cyclotron harmonic resonance will be

affected near Wp and the perpendicular resonance near SR"

This theory does not indicate that either resonance is any

stronger than the other.

Applying these criteria to the Alouette it seems that there

are three points in favour of parallel resonance being the one observed

(Lockwood(1965)).

(a) Cyclotron spikes are apparently unaffected at _R (Fejer and Calvert

(1964) Figs. alsoPart 4).

(b) Cyclotron spikes are apparently strongly affected at _ (Fejer and
P

Calvert (196_), Fig. 4e, also Part _).

It is possible that the reason for this may lie in the finite size of

the antenna. Since for both waves we need a very small k, it is likely

that having the finite length antenna oriented along the magnetic field

is most favourable for a small k. and so the antenna is more effective

for excitation when oriented along the magnetic field.

Signal Strength

Although we do not know the exact values of F and related

quantities in the final results we can estimate the field expected and,

using the receiver parameters, the length of time over v_ich the signal

can be detected. The result is in quite reasonable agreement with the

Alouette observations' The method of estimation is similar to that
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employedby Sturrock (1965), except we work in MKSunits.

The Receiver Sensitivit_ is given as 20 db above noise i.e. 102 above

KTB, which for the Alouette at 107 OK and 2 x 104 cps bandwidth is a

power sensitivity of 2.76 x I0-'° watts. This result is 104 gre_ter than

that of Sturrock (1965)who used the ionosphere temperature (_ 10S °K)

instead of the galactic noise temperature_which at 2 Mc is about 104 OK

Hartz (1964).

With a matched load of 400 ohms (matching is not likely but the

value is a reasonable rough estimate) the antenna voltage at the terminals
I

is (2.76 x 10-1° x 400) _ or 3o32 x 10-4 volts. In the absence of the

antenna the minimum detectable field, which is very roughly the minimum

voltage divided by the antenna length (47 meters), gives a field sensitivity

E . = 3.32xi0-4/47 = 7xi0 -6 volts/meter
mzn

The transmitter dipole moment (IL) is obtained using the output

of 100 watts into 400 ohms to give 0.5 amps current. The dipole moment

is then 23 amp-meters.

The scale factor for the pulse train is r i.e.

ei(S=n)T_l
=T i(w O)T ~

For the Alouette r is 10-4 seconds.

Representative values for the satellite velocity are 104 meters/sec

and for the electrons 1.6 x I0s meters/sec (at 2000°K). For an 80° orbit

the satellite velocity component (VA) perpendicular to the field lines is

one fifth or more of the satellite velocity, say 3 x 10_ meters/sec.
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The numberof cycles for which the signal might be detectable

from the formulas for either resonance field, neglecting the F functions

etc., is

I F vt'_ _so Emi n c-rV_-T P(r_b)
(37)

Taking 2 Mc as a representative frequency for resonance and

inserting the values given above we obtain

No. of 2Mc cycles = 46

Ringing time 46 × (2 × 106) -' = 2.3 × I0"s sec = 2_3 _sec

A ringing timeof2- 6milliseconds is usual in Alouette records and thus

evidently the estimate gives a value at least a factor of 100 too low.

In fact_since_the Alouett_ receiver _oes not turn on until 100 _sec

after the transmitter_ the signal calculated here would be swamped by

galactic noise long before the Alouette could detect it.

Hence the Alouette cyclotron harmonic resonances must be

explained by the coupling resonances and in some cases perhaps by the

backward electrostatic or "Bernstein" modes.

A very crude estimte of the coupling resonances indicates

they are stronger than those considered here by a rough factor (cVA/vt2)J.
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T.W. Johnston

- ABSTRACT -

The Alouette results are summarized and discussed.

A non-mathematical exposition is given of the course of mathematical

analysis pursued and the results obtained. The numerical result

obtained for the particular case of small w_ve number gave a signal

which was one hundred times too small, so concentration of future

work on coupling resonance is urged.

In view of the apparent importance of parallel resonance

the physical basis of this mechanism is explained.

Recommendations fcr future work complete the _x_osltion.
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I. SUMMARY OF OBSERVATIONS

Enough of the Alouette results have been made public (by

Lockwood (1963, 1965), Warren (1963), Calvert and Goe (1963) and Calvert

and Fejer (1964)) that some useful conclusions can be drawn from them.

As well as giving references to the literature it seems worthwhile to

summarize the features of the results and show typical records to give

the reader some feeling for the general results, the data and the form

in which it is available.

Soundir_ Satellite Operation

The Alouette satellite operation circuitry and construction

has been described in detail by Franklin et al (1963) and by Mo_ozzi

(1963).

The transmitter in the satellite sends out a train of waves

which lasts for 100 psec. at a given frequency. After a 100 _sec.

dead time the signal is picked up through one of two perpendicular dipole

antennas (a 46 m (tip-to-tip) dipole for frequencies less than 4.5 Mc/s,

a 23 m antenna above) by a receiver which is turned on for 14.6 milli-

seconds. The cycling time is 15 milliseconds. The frequency of both

transmitter and receiver are steadily increased at a rate of I Mc/sec/sec.

Thus in one cycle the frequency changes by about 15 kcs and it takes

about 11 seconds for a scan from .5 to 11.5 Mc. S_nce the satellite

travels at about 104_/sec it moves about 150 meters in a sounding cycle

and 11 0 km for a frequency sweep.

Part of a typical ionogram is shown in Fig. I with the second

and third harmonic resonances indicated. The actual receiver records

are given in the montage of Fig. 2. F_8. 3 shows a full iono_ram.
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Many such ionograms have been examined but little work has

been done on the detailed line recc_ds.

Analysis of Results

There are four papers and one available as an abstract which

contain analyses of results. Three also contain some theory as well:

that aspect is discussed in the critique given in the Appendix. Here

the emphasis is on the data analysis.

In the first paper Lockwood (1963) identified the cyclotron

harmonics in the Alouette i0nograms. In a later paper Lockwood (1965)

examined the orientation data from the Alouette magnetometer and come

to the conclusion that, for the high-frequency cyclotron harmonics at

any rate, the resonance depends on antenna orientation and is favoured

when the antenna element is parallel to the magnetic field. The

orientation had been shown to be important by Johnston and Nuttall (1964)

(their Fig. 2, and related discussion).

Hagg (1963) has compared the magnetic field results with those

deduced from the spherical harmonic coefficients for the field near

the earth's surface. In general it is usually possible to pick one scan

line which gives a stronger resonance than its neighbours (see Fig. 2),

giving a frequency accuracy of 15 kc, which is .15% at 10 Mc. Hagg comes

to the conclusion that the agreement between the spherical harmonic result

and the value from the assumption that the resonance occurs exactly at

the cyclotron harmonic is as good as the expansion accuracyC1_ Unpublished

work (private communication) indicates that within this error limit

the trend of results indicates that the cyclotron harmonic resonance

occurs slightly below the cyclotron harmonic frequency. These are vital
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points, since the moving satellite can be expected to see a Doppler-

shifted resonance. The fact that the Doppler shift is small immediately

sets an upper limit on the wave number of the cyclotron wave of interest.

Positive or negative shifts should indicate whether a backward or

forward wave is involved.

In addition to these publications there are two papers on

cyclotron harmonics and electron concentration-dependent plasma

resonances. In the first, written by Calvert and Goe (1963), the

identification of the plasma resonances and cut-offs (zero-range traces)

was adroitly checked by choosing two easily identifiable phenomena to

calculate _p and _b and check the frequency values of the others. The

correspondence was excellent, thus establishing the proper identification

and correcting an earlier error by Lockwood (1963) which led to a

short-lived concept of Udisplaced" plasma resonances (Warren (1963)).

Calvert and Goe plotted the results of a series of ionograms

taken in succession on a satellite pass and demonstrated how it then

became relatively easy to distinguish true plasma effects and instrument

defects. This way of abstracting results also made it v@ry easy to

follow a given resonance as the ratio of Wp/_ b charged along the

satellite path and led to the idea of investigating the ionograms for

which interesting frequency conditions held, e.g. _R _ n_b" One now

lo9ked at related series of ionograms rather than isolated examples.

(It was in just this way that Johnston and Nuttall (1964) later detected

the "tuning out" of the cyclotron harmonic due to satellite spin.)
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Fig. I Selected portion of an Alouette Ionogram (.SMc/s to

4.SMc/s and 0- 10m sec delay) from Ottawa, day 276
16:48:51U.T.



Fig. 2 Selecte_ A (line) scans (67m sec long, ~ 15kc uniform

shift/line) from Fig. 1, (a) across _b and (b)

across _b"
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Following this concept Fejer and Calvert (1964) assembled the

results of many ionograms and plotted the average (over one to three

dozen results) duration in cycles of resonances as a function of _Sb

for the lowest four cyclotron harmonics. These results are reproduced

in Fig. 4 with the theoretical curves of Fejer and Calvert removed to

let the data stand alone. The values for n_b = SR and n_b = s haveP

been inserted where relevant.

Without any preconceived theory, what significant features

can be discerned? The duration of resonance is typically 103 to I04

n = 4, Fig. 4(4). The fourth cyclotron harmonic is too high

to show interesting effects since it is apparently always above sR"

n = It Fi_. 4(I) - The fundamental is nearly always in the range .5 to

I Mc (see Calvert and Goe) and hence is near the lower limit of the

receiver response. The apparent drop as wb approaches Wp shouldbe viewed

with suspicion unless corrected for receiver response.

n = 2, Fig. 4(2) - The second harmonic duration data shows no strong

features but a tendency to decrease somewhat when 2 _b is less ths_ Sp.

Perhaps there is an indication of an increase when Sb = _p' but this,

if genuine, is probably a non-linearity on wb just as the 2_T resonance

is associated with sT non-linearity.

n = 3t Fi6. 4(3) - The thir.____dharmonic shows an interesting marked decrease

in the vicinity of 3_b = m .P

These would seem to be the major conclusions to be drawn from

this data. These points and those obtained from Lockwood and Hagg

(above) are the general features which should guide the theoretician in

the choice amongst the many possibilities of cyclotron harmonic phenomena.
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-5-

In order to verify some points from the theory_ typical

ionograms for n_b _ _R and r_b = Sp were felt to be worth investigation.

The first condition could be met with ionograms already in our

possession, made available to us by Dr. R. Barrington of the Canadian

Defence Research Telecommunications Establishment near Ottawa. lonograms

for the second condition were not in our possession and were not available

in time for this report although they shouldbe in our hands in due

course.

The SR = _b situation is exemplified in Fig. 5 for n = 3,

n = 2, where 1.0 - 1.5 Mc sections of ionograms are shown and indicate

that coincidence of _R and n_b has n_o noticeable effec t - a particular

case confirming what can be deduced from the Fejer-Calvert presentation.

Results from Data Analysis

Let us summarize these briefly.

(I) The cyclotron harmonic ringing lasts typically for 105 to 104 cycles

(Fe jet-Calvert).

(2) The maximum effect is obtained for a frequency which agrees with

the earth based calculations to 1%, the accuracy of the calculations

(Hagg). The Doppler shift, if any, is evidently small.

(3) The only pronounced effect from the duration vs w/s b data is a deep

minimum for the 3wb resonance when 3_b = _ (Fejer-Calvert Fig. 4,P

our Fig. 4(3)). There appears to be no effect at SR in any of the

possible cases (n = 2, n = 3).

($) The favoured orientation for cyclotron harmonic resonance is when

the antenna is oriented along the magnetic field (Lockwood (1965)).
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Fig. 5. Ionograms extracts (between I and. 1.5 Mo) showing the lack of effect of

nw_ near to _R for (a) 3w b (b) 2 _. The ionogram references for (a) and

(b_ are from left to right:

(a) October 7, 1962,.Quito (Station 7) Day 280 U.T. 13 hours and 50:0A,
50:_, 51:55, 52.32 (alternate ionograms)(_:58 was used by Johnston

_a Nutt_ (I9_)).

(b) October 2, 1962, Ottawa (Station 3) Day 275 U.T. IA hours an_ 26:08,

26:26, 26:45, 27:03, 27:22, 27:59.

Ionogramscourtesy Canadian Defence ResearCh an_ Telecommunications

Establishment, Ottawa.
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II. THEORY WITHOUT MATHEMATICS

The mathematical analysis presented in parts I,2 and 3 is

forbidding in appearance and is not likely to be assimilated in one

or two readings. It seems useful) therefore, to give an outline of the

philosophy and ideas involved and the results obtained without going

through the _ma+bemotical_.._ _,__o_,,__--_u_,^-_without even giving the

equations, only the formulas for the results.

The basic problem was to explain the Alouette results.

Basic Concept

At the time this work began we were closely connected with

Nuttall's work on the parallel plasma frequency resonance (Wp) and the

perpendicular transverse frequency resonance (ST)(W A in Nuttall's

notation) since published Nuttall (I965) •

The basic concept (borrowed from fundamental particle

dispersion theory) was that singular behaviour would result from the

coalescing of two dispersion equation solutions in such a manner that

a certain integral line was "pinched" between the associated poles

(see Nuttall (1965) and references after Part 3).

This degeneracy condition can usually be linked to the concept

of a wave whose group velocity in some appropriate frame of reference

is zero.

In the Alouette case the logical frame of reference is that

of the satellite. The concept is one of a plasma wave packet which

is set up by the sounder pulse and which then travels with the satellite

(group velocity = satellite velocity). This wave packet then slowly

decays because of higher-order dispersion effects. When the wave •
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packet or (group) velocity is not equal to the satellite velocity the

packet would move quickly away from the satellite and become

undetectable.

The concept of zero group velocity (usually the satellite

motion is ignored) has been employed by all the serious analysts of the

problem. This group-velocity criterion gives the observed resonance

frequencies except for 2sT (a non-linear effect) and SR and _L which

are singular but give no resonance in most cases.

The next point is the close agreement between the cyclotron

harmonic resonances and the exact multiples of the gyro frequency.

This satellite velocity is considerably smaller (I/16) than the electron

thermal velocity but nonetheless the observations indicate that the

perpendicular and parallel wave numbers must be less than 6 m-I and 2 m-'

respectively, the wavelengths being greater than .16 m and .Sm. Thus

our attention is focussed on small but non-zero wave numbers. The wave

numbers cannot in any case be exactly zero because of satellite motion.

We are thus led to examine solutions for the plasma dispersion

equation which are very near nwb, which give group velocities equal to

the satellite velocity and have small wave numbers compared with the

thermal wave numbers (n_b/Vt) . To obtain the dispersion equation the

plasma dielectric coefficient must be known.

Dielectric Coefficient (Part I)

The plasm_ dielectric coefficient to use is evidently

the one derived from the Vlasov equation as indicated in the introduction

since collisions are known to be utterly negligible in the cases of

interest. At first (progress reports July-October, 1964) the
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nonrelativistic equations were used and satellite motion was ignored.

Later (progress reports November,December1965) it was realized that

the no,relativistic equation was invalid very close to n_b and that

relativistic analysis mustbe used.

Part I of this report was therefore devoted to the exposition

of both the relativistic and nonreiativistic dielectric coefficients.

Whennot very near the cyclotron harmonics the differences

are completely negligible for a plasma which has kinetic energy for

less than the rest energy (kT(_ mc2 kT/mc2 ~ 2.5× 10-_ for the Alouette).

The relativistic cyclotron harmonic terms for small k_

contribute poles in nonrelativistic theory and branch points with large

discontinuities at the average relativistic cyclotron harmonic, which

is very slightly (50 kT/mc2 %) below the rest-mass cyclotron harmonic

frequency. The difference mayappear to be small but gives dispersion

equation results which differ in two importsht features from those of

nonrelativistic dispersion theory.

Dispersion Equations (Part 2)

As indicated in the Introduction this report, the dispersion

equation and other parts of the Laplace-transformed Green's function

need to be calculated to obtain the electric field. Since the

relativistic and nonrelativistic dielectric coefficients differ only

very near the cyclotron harmonics it is only there that dispersion

equations differ. The dispersion equation results have been obtained

and discussed in Part 2. The relativistic and nonrelativistic results

differ qualitatively in two important respects:



(I) A nonrelativistic feature which gave one wave very close to the

cyclotron harmonic frequency proves to be spurious and vanishes

in the relativistic analysis. A typical change ie shownin Fig. 6.

n_b

Non-relativistic

r_b

A-H
k_

Relativistic

Small kA / _ .

pllng

A-It

k----¢_

Fig. 6 - Disappearance of spurious wave (s).

(2) The relativistic dispersion solution for the cyclotron harmonic

very near zero wave number increases in frequency while the

nonrelativistic solution goes right to zero wave number (see Fig. 7)



n_b

Non-relativistic

J

k_

n%

Relativistic

small- k pinch

k_

Fig. 7 - Change in behaviour for small wave numbers.

The first feature eliminates a spurious wave from

consideration (the wave had already given peculiar results in the

nonrelativistic analy sis).

The second feature is i_te_sting since it now becomes possible

to match perpendicular group and satellite velocity for small wave

numb er.

Selection of Dispersion Regions

As indicated earlier the small Doppler shift indicates a

modest value of wave number. We wish to match the group and satellite

velocities. One possibility is that indicated in Fig. 7. Another

_ossibility is the region where the cyclotron harmonic solution

couples to the Appleton-Hartr_e solution, as sketched in Fig. 8.
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W

r_b
i

A H

_lzng

pinches

k

Fig. 8 - Appleton-Hartree and cyclotron harmonic

coupling pinches.

There are two possibilities for each Appleton-Hartree solution, four

in all. These would disappear with increasing _p/_b as r_b becomes

less than the relevant cut-off frequency, _R' or Sp. (Note that SL

applies instead of _R if r_b is less than _T and greater than SL. )

The collected results of Fejer and Calvert (1964) show no

such frequency cut-off, only a dip in the 3_b case at Wp. Hence it

seemedthat these cyclotron harmonic resonance and Appleton-Hartree

wave coupling possibilities did not fit the observations and so they

were not pursued further. Last-minute corrections on the numerical

work showed that the small-k signal was undetectable and so, in spite

of appearances, the cou?led resonances must be considered as prime

targets for analysis.
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Time Behaviour and Numerical Result

Having decided to concentrate on the dispersion equation

behaviour near zero wave number the calculation in Part 3 was essentially

only mathematical technique. It involved the mathematical concept of

k-poles pinching the integration line and expansion around the singular

region.

The final result from Part 3 (Eq. 30 and Eq. 36) proves to be

very much the same_ at least superficially_ for both the resonances both

extraordinary (electron resonant circularly polarized) and ordinary

(polarized parallel to the magnetic field).

After the correct galactic noise temperature was inserted at

the eleventh hour, the field proved to be too small by a factor of 100

to fit the observations.

The mathematical technique must therefore be applied to the

other pinch points in future work.

There is a possibility that the parallel resonance might be

more effective when one considers the wave number requirod. This

demands a very much lower value of parallel than perpendicular wave

number, i.e. the most gentle variation along the magnetic field.
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Examination of the infinitesimal dipole field shows that the most

gradual variation occurs when one movesparallel to the dipole line.

Hence one might expect the dipole parallel to the magnetic field to give

the most excitation. Apparently this does not seemto emerge naturally

from the analysis but appearancesmaybe deceptive. Finite antenna

size maybe important here.

III. COMPARISON OF THEORY _TITH EXPERIMENT

The observations seem to point in three different ways, two

positive and one negative_ to the ordinary or parallel cyclotron resonance

rather than to the other. These points are as follows:

(I) According to Lockwood (1965) the favoured antenna orientation is

that with the element along the magnetic field. This fits the

orientation of the infinitesimal dipole model for ordinary resonance

and is opposite to the orientation for extraordinary resonance.

(2) As shown in Fig. 4(3) the Fejer-Calvert data show an _ dip
P

consistant with a K. effect in the ordinary resonance formula.

Ionograms should soon be forthcoming to check this point further.

(3) As shown in Fig. 4(2),(3),(5) there appears to be no sR effect

at least for the second and third harmonics. This is confirmed and

exemplified by the ionogram extracts of Fig. 5.

Parallel or Ordinary Cyclotron Harmonic Resonance

In view of our conclusions on the importance of parallel

resonance, some remarks on the basic concept are in ordere (The basic

picture for perpendicular effect has already been described by Lockwood

(1963) and Johnston and Nuttall (1964). The parallel effect basic concept

has not been discussed, but it is equally easy to visualize.
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Weakfield

Induced drift

along B

Strong field _

Figure 9. Parallel cyclotron harmonic excitation
effect on electron ring systems orbiting
around a commoncentral magnetic field line.

Weconsider a ring of electrons of the samevelocity

magnitude circulating aroun_ a commonmagnetic field line and drifting
t,/

along it. If the electric field parallel to the magnetic field varies

in a direction across the magnetic field, the electrons in the ring

will be given different rf velocities at different positions around the

ring. If the radio frequency is a cyclotron harmonic, the effect of

the non-uniformity will not average out in time and will be cumulative.

The effect will be that our ring will begin to stretch along the magnetic

field lines due to the acceleration. The effect will alternate around

the ring, the number of cycles being equal to the frequency harmonic

number (_/_b = n). If the excitation is non-uniform (i.e. @2E/Sx_ Is

not zero) then there will be a net current at r_b.

Before the analysis was well under way some qualitative

reasoning had been carried out (given in the June progress report) on

the question of perpendicular and parallel resonance. This is reproduced

below as it is not without interest.
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_'If we consider the case observed to be favourable to cyclotron

harmonic ringing of parallel orientation (antenna parallel to the

magnetic field), the excitation decays by flow of electrons along the

magnetic field lines. The electrons travel at an average velocity of

2 x 105 meters/sec and so can travel the antenna length (_ 10 or 20

meters) in times of the order of 50 _sec or 100 _sec. Hence the

excitation of both antenna elements should be well mixed by the time

receiver observations are begun, one hundred microseconds after the

exciting pulse ends. Hence we are forced to the conclusion that the

I

in-phase or symmetric E z excitation parallel to the magnetic field is

much more likely to persist and the antiphase, antisymmetric E effects
r

perpendicular to the magnetic field are likely to be rapidly mixed and

cancelled. 0nly if E effects are initially far stronger than E are
r z

they likely to be observed in the late decay.

When the antenna is across the magnetic field then the even

excitation comes from the E z field, which is now perpendicular to the

magnetic field, and from the component of E which is also perpendicular
r

to the magnetic field, so that the excitation would be predominantly

perpendicular. Since cyclotron harmonic effects are not observed when

the antenna is across the magnetic field it seems that perpendicular

excitation is not effective.

Let us look at the effectiveness of the excited decaying

current and charge in inducing a signal on the antenna.

Parallel excitation gives a cylindrical current system with

axis more or less along the antenna and current parallel to the cylinder

axis. This is very effective in inducing current in the antenna.
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By contrast, the radial current from the charge excitation

due to the perpendicular electric field only induces antenna effects

to the extent it is non-uniform.

Thuslfrom the consideration of antenna field parity, electron

flow along magnetic field lines and the Alouette antenna orientation

effect on cyclotron harmonic signals_ we are led to the following

conclusion. The dominant cyclotron harmonic mechanism due to non-uniform

antenna field is due to the electric field component along the magnetic

field lines. For the favourable parallel and near-parallel orientation

this can be thought of as the induction electric field (Ez) of the

antenna current rather than the electrostatic field of the antemla charge.

From this reasoning we feel that if it becomes necessary for

reasons of time, computer cost, etc., to concentrate on one aspect,

then the parallel excitation is the mechanism on which to concentrate."

IV. SUMMARY

The theory as developed in this report and the available observ-

ations point slightly but definitely to the excitation of an ordinary

wave cyclotron harmonic where it couples to the ordinary Appleton

Hartree wave as the basic cyclotron harmonic phenomenon in the Alouette

records.

It is not theoretically well established that this mechanism

is dominant. More work should be done to clear this point up, of the

kind that showed the small-k pinch could be ignored.
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V. FUTURE WORK

The problem and the results are not yet in as clear and as

definite form as is desirable. Much analysis has been accomplished

yet more should be done to clear up the situation further and give more

definite results. Additional data analysis and theory are required.

The main lines which suggest themselves are as follows:

Observations

More Alouette and S-48 data should be analyzed: the S-48

for modulation and orientation effects (but unfortunately cyclotron

harmonic effects only occur if the fixed frequency coincides with a

cyclotron harmonic) and the Alouette for the effects of variation of

frequency and electron density, not to mention comparison between

resonances of different harmonic number. Points to check are: details

of critical frequency behaviour n_b _ _p, SR, ST; the form of the

time variation including AGC; orientation; and form of roll and any

other modulation.

Whe_ 

The coupled pinches of Fig. 8 should be investigated

immediately and intensively to obtain E(t) for them. The mechanism

for the behaviour of the three lowest harmonics for high densities

should be studied carefully particularly when they are comparable with

_L' Sp, sT or SR"
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APPENDIX

CRITIQUE OF THE THEORETICAL WORK
ON

TOPSIDE SOUNDER RESON_NCES

Theories of resonances can be called either identification

theories when the observed resonant frequencies are correlated with

characteristic calculated frequencies or behaviour theories if

an attempt is made to calculate such features as damping, frequency

widths and other effects. "Identification" is far easier than

.behaviourf.q

Identification

In the case of the Alouette resonances, one set were

easily identified immediately as cyclotron harmonics by Lockwood (1963).

Lockwood attempted to identify other plasma resonances but chose

incorrectly and it was left to Calvert and Goe (1963) to identify the

other plasma resonances as the plasma frequency (Wp ~ X = I) the

transverse plasma resonance wT (upper hybrid or Pythagoras frequency

_Sp2+ _b ' N X = I-Y2) and often its second harmonic (2WT).

Johnston (1964)and independently Wallis (1965) also noted

that, from the Calvert and Goe results, the 2sT resonance could only

appear for sT _ 2_b. This was confirmed by Calvert (1964) after

further study of a large number of cases.

Behaviour

The various frequencies associated with the Alouette

resonances appear as characteristic frequencies for the Vlasov plasma
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dispersion equation and its two main simplifications viz. simple cold

plasma electromagnetic (Appleton-Hartree) theory and warm (Vlasov)

plasma simple electrostatic theory.

Cold Plasma Appleton-Hartree Theory

k'a 
In cold plasmas _ 8k goes to zero and k._ (where the

equations are not valid) for frequencies _8_+ which satisfy the following

equation.

w28+

I

I [sT2÷ (sT,

However, as Sturrock (1961) pointed out in connection with radio

bursts from the sun, 8s/Sk itself only goes to zero for 8 = 0 and _/2

i.e. w = w and s = sT . The behaviour at w is degenerate for all k.
P ± P

(k. = 0, _ and (Wp/C)(Sb/(Sp+Wb)) z in particular) and can only be

disentangled with a warm plasma to remove the degeneracy.

Cyclotron harmonics do not appear.

Vlasov Plasma Electrostatic Theory

Using the Vlasov equation with the velocity of light set

equal to infinity (i.e _>> w/c) one obtains the Vlasov electrostatic

dispersion equation which gives wS± as Ikl * 0 (where the electrostatic

approximation is generally invalid) for fixed 8. The cyclotron harmonic

harmonic frequencies are the k. = 0, kA * 0, kA ,_ limits of

perpendicular cyclotron modes.
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Vlasov Plasma Electromagnetic Theor_

In this, the most general collisionless uniform plasma theory,

w behaviour is no longer degenerate because electron random motion is
P

now considered. Satellite motion may well be important. The sT

resonance is associated with a real (8s/8_ = O, for real k,s) pinch for

sT _ 2_b and with a complex pinch for sT _ 2_b, for zero k, finite k.

of order s_ vV----tc. The cyclotron harmonic behaviour is in evidence for

k, = 0, k. * _ and for finite k. where an Appleton-Hartree solution

would exist.

Neither cold plasma electromagnetic theory nor Vlasov plasma

electrostatic theory is w_lid at the sT resonance since the resonance

occurs outside the limits of their validity (k _ s/vt, k_ s/c

respectively). One must in general use the full Vlasov plasma theory

vwlth the electromagnetic theory to get useful results.

Very near r_b and particularly as k * 0 the relativistic

Vlasov equation must be used.

To date, besides the connected work of Nuttall, Johnston and

Shkarofsky there are three other papers or reports which attempt to

come to grips with the behaviour of the Alouette resonances.

Two of these have been published. These are the work of

Fejer and Calvert (1964) and of Sturrock (1965). Both are alike in

that they begin with the electrostatic nonrelativistic Vlasov plasma

dispersion equation.

The third report has just come to hand. It is the work of

Dougjlerty and Mo_aghan (1964) of Cambridge. The spirit of this last
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work is the sameas that of Nuttall, Shkarofsky and Johnston and they

agree as far as they have gone. They reach the sameconclusions as we

do as to the form of the nonrelativistic dispersion equation and discuss

likely pinches but have gone no further. Wehave no criticism of the

work as it stands except to say that we agree with it as far as it

goes but that it is a beginning only and that relativity is important

very near n_b.

Let us return to the Vlasov electrostatic analyses of Sturrock

and of Fejer and Calvert. The focus of these is on I_* O, i.e. on what

might be called electrostatic cut-offs.

The first and most serious criticism is directed at the use

of the electrostatic approximation (E = - V_) near cut-offs.

In the electrostatic approximation the field is linearly

polarized along k_ and only the highest terms in k are kept in hhe

dispersion equation, which becomes

K: nn=O

where n - kc/_ is the refractive index vector and K is the relative

dielectric tensor. This is a nea_-resonance condition (n *'_).

The near-cut-off condition is an expansion in n around the

cut-off condition.

=o

In general (in contrast with the longitudinal polarizational parallel

to k in resonance) there are parallel cut-offs when the electric field
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is linearly polarized along the magnetic field and there are perpendicular

cut-offs when the electric field is circularl_ polarized in a pl_ne

perpendicular to the magnetic field.

In general the behaviour of the electrostatic solutions

near n = 0 differs markedly from the nonrelativistic electromagnetic

near-cut-off solutions (see Figs. I - 3 of Dnestrovskii and Kostomarov

(1963)). Hence the electrostatic equations cannot be ex_pected to produce

correct results for small n. For sufficiently large n the electrostatic

solution is adequate and has been successfully used by Crawford, Kinc and Weiss

(1964) in calculating the displaced cyclotron harmonic frequency.

Nuttall,(1965) _n his work, took particular pains to treat SN and

sT phenomena properly. We are pursuing the same course for the cyclotron

harmonic s.

The common serious criticism of these two analyses is that they

rest on the electrostatic dispersion equation applied where it is inwRlid

and _ives incorrect results.

Apart from this fundamental objection (which might be removed

if the correct dispersion equation were employed) there are other

objections as well, but they are different for the two treatments.

Sturrock

The SR' WL electromagnetic effects are properly based on the

cold electromagnetic equations and seem adequate although limited to an

infinite-impedance infinitesimal dipole. (On the other hand Dougherty

and Mo_ghan (1964) come to the conclusion that_ although there is a

dispersion singularityj the associated field is not singular so the spike

is unlikely to be observed.)
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The other results are incorrectly based on the electzostatic

formulation.

Apart from the dispersion equation used there are still points

to question in the procedure.

The plasma (Sp) and transverse (ST) resonance frequencies do

not emerge correctly, since the value for s as n * 0 for a given e is
I

2 z)_ viz:
se+ which is between _T = (Sp + sb and the higher of sb or Sp,

I I

(_ 2_)b2 Cosl _-__ _
P

This is the function that should enter the e integration.

The results obtained may be justified as approximations but this

requires some demonstration or discussion since the change in se + with

e is not small. The sT result is for a non-zero k as shown by Nuttall.

Nuttall's (1965) s result for k = 0 gives a Green's function of
P

I • (_pt)_/2- i(s 2- s 2)_/4_3 vtc2 or an asymptotic time dependence elSpt/vt 02
P

as compared with Sturrock's (1965) eiSpt/vt_(Spt) s/2. For, say I0J cycles

This is a difference of lO_ from Sturrock's result. In the Alouette case

the pinch occurs for 8s/8_ = V_ so the k = o region is probably not in-

volved. A pair of electrostatic - Appleton-Hartree coupling pinches vJith
I

k. = _p/C (Sb/(s _b are the probable points of interest.

• The cyclotron harmonic results using the incorrect (i.e.

electrostatic) equation near k * 0 give serious divergences unlike the

the electromagnetic solution.
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Using the Green's function for w at least the asy_!ptotic
P

excitation is locally uniform, which seems to rule out Sturrock's

conjecture that satellite motion might be a major course oi signal

reduction.

In view of the foregoing little reliance can be placed on

the conclusions. Nonetheless the overall method of attack is well

founded. The asymptotic time behaviour is deduced from certain integrals

(A.7 to A.13) which, strictly speaking, do not converge. The results

can be justified for asymptotic behaviour but this should be done

explicitly to avoid misleading readers.

Fe _er-Calvert

The same objection to their quasi-static analysis applies as

mentioned in connection with Sturrock's work. Instead of the more-or-less

direct Fourier Laplace transform approach, Fejer and Calvert attempt to

employ the concept of group velocity. The concept of a group velocity

is only well defined when the characteristic spread in wave number Ak

is much less than the wave numberk. Then one can say that the size of

/

the wave packet is of thee order of 2W/(Ak). V_hen the group velocity

tends to zero, as it does for cases of interest, the spreading becomes

more a phenomenon of phase mixing or destructive interference rather

than of group velocity_ When the group veloci_ ° goes to zero, one is

warned to re-examine the situation (see Brillouin, particularly Chapter

5_ Sec. 4). It might be quite useful to discuss the dispersion of a

wave packet, but this would be irrelevant to this critique. (See Part 3.)
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So long as the group velocity is not nearly zero then the

Fejer-Calvert argument of their Page 5055 applies and the time of

passage of the wavepacket measuredin Ak direction in s periods is

T - Ak.Ss
8k

ev

8k

But for Ak_ we should use Ak = Aw 8-_

so we obtain T as one expects.

When this formula is invalid (i.e. when 8e/8_ goes to zero)

then so is the use of group velocity. One must use higher derivative,

but the general t-p amplitude behaviour, obtained by Sturrock, Nuttall

and ourselves, means that a natural time scale is not likely to be

found.

Apart from the objections given above, the r and m

expressions given in their Appendix diverge for k _ 0 and there seems

no way of setting a lower limit on k nor do they suggest one. Unless

the ad hoc _ssumption_that em is the same finite constant for each

resonance? can be justified, the comparisons between harmonics or between

measurements in different conditions is meaningless.

Let us also discuss the useful experimental data presented

by Fejer and Calvert.
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Their Figs. 4a and 4b suggest that the _pS H c_r_cteristics

cannot be unambiguously ascertained with the present Alouette's low-

frequency limitati on.

The _T observations in Fig. 4c show a striking change when

sT _ 2wH (i.e. Sp _ W3WH). (See Nuttall (1965a), also private

communication to Calvert by Johnston.) The quasi-static theory should

also show this (F-J Eq. 26) but _o_t _,r not as ÷_÷_ b_ Fejer

and Calvert.

The 2_H, 3_H data do not (except perhaps slightly for 2_H)

show any violent effect at nsH = sT (_N = n2V_- _SH) but nor do they

at n_H = s+(s N = _ SH) as predicted by the equivalent zero-k

stationary frame nonrelativistic electromagnetic theory. There is an

apparent effect in the 3_H data when 3_H = s .P

Apart from the useful data and the general heuristic value

of the dispersion equation contours of their Fig. 3, the Fejer-Calvert

approach cannot be said to be satisfactory.

CONCLUSION

•For these reasons given above the electrostatic analyses

discussed here cannot be considered successful or adequate and the

problem still awaits a proper treatment.

The Sturrock paper has the better theory (although a little

shaky) but is incorrectly based on electrostatic dispersion. It would

be vastly improved using the correct dispersion equation. The Fejer-

Calvert theory is quite inadequate but the review and observation data

is quite useful.
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The Dougherty-Moz_aEhanapproach is essentially the s_ze

as ours, but they have gone no further than a preliminary investigation

of theory and give no results for time behaviour.

Wallis (1965) has really done no more than comment on

the Calvert-Goe data and draw attention to the work of Dnestrovskii and

Kostomarov.
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